Your browser doesn't support javascript.
ABSTRACT
Numerous vaccines have been generated to decrease the morbidity and mortality of COVID-19. CoronaVac® is an inactivated SARS-CoV-2 vaccine approved by the World Health Organization (WHO) to prevent COVID-19 that has safety and immunogenicity profiles described in different clinical trials. We previously reported an increase in levels of neutralizing antibodies two- and four-weeks after administering two doses of CoronaVac® in a two-week interval (0-14 day) vaccination schedule, as compared to pre-immune sera in adults in the Chilean population that are participating in phase 3 clinical trial. Here we report the levels of antibodies directed against the Receptor Binding Domain of the SARS-CoV-2 spike protein comparing their neutralizing capacities and the cellular response at five months after the second dose and four weeks after a booster (third) dose in volunteers immunized with two doses of CoronaVac®in a four-week interval (0-28 day) vaccination schedule. We observed a decrease in the levels of anti-SARS-CoV-2 antibodies with neutralizing capacities five months after the second dose (GMU 39.0 95% confidence interval (CI)(32.4-47.0), which increased up to 12 times at four weeks after the booster dose (GMU 499.4, 95% CI=370.6-673.0). Equivalent results were observed in adults aged 18-59 years old and individuals ≥60 years old. In the case of cellular response, we observed that activation of specific CD4+ T cells increases in time and reaches its maximum at four weeks after the booster dose in both groups. Our results support the notion that a booster dose of the SARS-CoV-2 inactivated vaccine increases the levels of neutralizing antibodies and the specific cellular response in adults of both groups, which is likely to boost the protective capacity of these vaccines against COVID-19.

Full text: Available Collection: Preprints Database: EuropePMC Language: English Year: 2021 Document Type: Preprint

Full text: Available Collection: Preprints Database: EuropePMC Language: English Year: 2021 Document Type: Preprint