This article is a Preprint
Preprints are preliminary research reports that have not been certified by peer review. They should not be relied on to guide clinical practice or health-related behavior and should not be reported in news media as established information.
Preprints posted online allow authors to receive rapid feedback and the entire scientific community can appraise the work for themselves and respond appropriately. Those comments are posted alongside the preprints for anyone to read them and serve as a post publication assessment.
A realistic agent-based simulation model for COVID-19 based on a traffic simulation and mobile phone data
EuropePMC; 2020.
Preprint
in English
| EuropePMC | ID: ppcovidwho-317552
ABSTRACT
Epidemiological simulations as a method are used to better understand and predict the spreading of infectious diseases, for example of COVID-19. This paper presents an approach that combines person-centric data-driven human mobility modelling with a mechanistic infection model and a person-centric disease progression model. The model includes the consequences of disease import, of changed activity participation rates over time (coming from mobility data), of masks, of indoors vs.\ outdoors leisure activities, and of contact tracing. Results show that the model is able to credibly track the infection dynamics in Berlin (Germany). The model can be used to understand the contributions of different activity types to the infection dynamics over time. The model clearly shows the effects of contact reductions, school closures/vacations, or the effect of moving leisure activities from outdoors to indoors in fall. Sensitivity tests show that all ingredients of the model are necessary to track the current infection dynamics. One interesting result from the mobility data is that behavioral changes of the population mostly happened \textit{before} the government-initiated so-called contact ban came into effect. Similarly, people started drifting back to their normal activity patterns \emph{before} the government officially reduced the contact ban. Our work shows that is is possible to build detailed epidemiological simulations from microscopic mobility models relatively quickly. They can be used to investigate mechanical aspects of the dynamics, such as the transmission from political decisions via human behavior to infections, consequences of different lockdown measures, consequences of wearing masks in certain situations, or contact tracing.
Search on Google
Collection:
Preprints
Database:
EuropePMC
Type of study:
Prognostic study
Language:
English
Year:
2020
Document Type:
Preprint
Similar
MEDLINE
...
LILACS
LIS