This article is a Preprint
Preprints are preliminary research reports that have not been certified by peer review. They should not be relied on to guide clinical practice or health-related behavior and should not be reported in news media as established information.
Preprints posted online allow authors to receive rapid feedback and the entire scientific community can appraise the work for themselves and respond appropriately. Those comments are posted alongside the preprints for anyone to read them and serve as a post publication assessment.
NETs By-products and Extracellular DNA May Play a Key Role in COVID-19 Pathogenesis: Incidence on Patient Monitoring and Therapy
EuropePMC; 2020.
Preprint
in English
| EuropePMC | ID: ppcovidwho-322707
ABSTRACT
Neutrophils play an important role as the first line of innate immune defense. One function of neutrophils, called neutrophil extracellular traps (NETs), has been discovered recently. NETs are extensive fibrous structures released extracellularly from activated neutrophils in response to infection. They are composed of cytosolic protein assembled on a scaffold of released chromatin. These structures suppress the dissemination of micro-organisms in blood by trapping them mechanically, and by exploiting coagulant function to segregate them within the circulation. In addition, NET components (DNA, histone, and granule proteins) also contribute to the triggering of an inflammatory process. NET function, however, can be regarded as a double-edged sword. On one hand, NET formation is an efficient strategy for neutralizing invading micro-organisms. On the other hand, NET can be harmful to the host, as its exposed by-products that are toxic to endothelial cells and parenchymal tissue. We present here the analogous biological and physiological features of the harmful positive amplification loop between inflammation and tissue damage induced by NETosis dysregulation and Coronavirus Disease-2019 (COVID-19) pathogenesis. Considering the rapid evolution of this disease symptoms and its lethality, we hypothesize that COVID-19 progresses under an amplifier loop, leading to an massive, uncontrolled inflammation process. We also describe the correlations of COVID-19 symptoms and biological features with those consecutive to uncontrolled NET formation causing various sterile or infectious diseases. General clinical conditions, and numerous pathological and biological features, are analogous with NETs deleterious effects. We postulate that Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV2) induces a disproportionate virus-induced NET release, and that this plays a key role in COVID-19 pathogenesis. While neutrophils are the principal starting point for extracellular and circulating DNA release, targeting NETs rather than neutrophils themselves may stand for an effective strategy. This paper offers an in-depth review of NET formation, function and pathogenic dysregulation, as well as of current and future therapies to control NET unbalance. As such, it enables us also to suggest new therapeutic strategies to fight COVID-19. In combination with or independent of the latest tested approaches, we propose that, in the short term, deoxyribonuclease I (DNase-1) treatment should be evaluated;we also advocate a significant increase in research on the development of toll-like receptors (TLR) and C-type Lectin like receptors (CLEC) inhibitors, and on anti-IL26 therapies.
Full text:
Available
Collection:
Preprints
Database:
EuropePMC
Type of study:
Etiology study
/
Incidence study
/
Risk factors
Language:
English
Year:
2020
Document Type:
Preprint
Similar
MEDLINE
...
LILACS
LIS