This article is a Preprint
Preprints are preliminary research reports that have not been certified by peer review. They should not be relied on to guide clinical practice or health-related behavior and should not be reported in news media as established information.
Preprints posted online allow authors to receive rapid feedback and the entire scientific community can appraise the work for themselves and respond appropriately. Those comments are posted alongside the preprints for anyone to read them and serve as a post publication assessment.
Online Causal Inference with Application to Near Real-Time Post-Market Vaccine Safety Surveillance (preprint)
EuropePMC;
Preprint
in English
| EuropePMC | ID: ppcovidwho-326400
ABSTRACT
Streaming data routinely generated by mobile phones, social networks, e-commerce, and electronic health records present new opportunities for near real-time surveillance of the impact of an intervention on an outcome of interest via causal inference methods. However, as data grow rapidly in volume and velocity, storing and combing data become increasingly challenging. The amount of time and effort spent to update analyses can grow exponentially, which defeats the purpose of instantaneous surveillance. Data sharing barriers in multi-center studies bring additional challenges to rapid signal detection and update. It is thus time to turn static causal inference to online causal learning that can incorporate new information as it becomes available without revisiting prior observations. In this paper, we present a framework for online estimation and inference of treatment effects leveraging a series of datasets that arrive sequentially without storing or re-accessing individual-level raw data. We establish estimation consistency and asymptotic normality of the proposed framework for online causal inference. In particular, our framework is robust to biased data batches in the sense that the proposed online estimator is asymptotically unbiased as long as the pooled data is a random sample of the target population regardless of whether each data batch is. We also provide an R package for analyzing streaming observational data that enjoys great computation efficiency compared to existing software packages for offline analyses. Our proposed methods are illustrated with extensive simulations and an application to sequential monitoring of adverse events post COVID-19 vaccine.
Search on Google
Collection:
Preprints
Database:
EuropePMC
Type of study:
Randomized controlled trials
/
Screening study
Topics:
Long Covid
/
Vaccines
Language:
English
Document Type:
Preprint
Similar
MEDLINE
...
LILACS
LIS