Your browser doesn't support javascript.
An intranasal nanoparticle STING agonist has broad protective immunity against respiratory viruses and variants (preprint)
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-334204
ABSTRACT
Respiratory viral infections, especially Influenza (endemic) or SARS-CoV-2 (pandemic since 2020), cause morbidity and mortality worldwide. Despite remarkable progress in the development and deployment of vaccines, they are clearly impacted by the rapid emergence of viral variants. The development of an off-the-shelf, effective, safe, and low-cost drug for prophylaxis against respiratory viral infections is a major unmet medical need. Here, we developed NanoSTING, a liposomally encapsulated formulation of the endogenous STING agonist, 2’-3’ cGAMP, to function as an immunoantiviral. NanoSTING rapidly activates the body’s innate immune system to facilitate a broad-spectrum antiviral response against SARS-CoV-2 and influenza variants in hamsters and mice. We demonstrate that a single intranasal dose of NanoSTING can (1) treat infections throughout the respiratory system and minimize clinical symptoms, (2) protect against highly pathogenic strains of SARS-CoV-2 (alpha and delta), (3) provide durable protection against reinfection from the same strains without the need for retreatment, (4) prevent transmission of the highly infectious SARS-CoV-2 Omicron strain, and (5) provide protection against both oseltamivir-sensitive and resistant strains of influenza. Mechanistically, administration of NanoSTING rapidly upregulated interferon-stimulated and antiviral pathways in both the nasal turbinates and lung. Our results support using NanoSTING as a thermostable, immunoantiviral with broad-spectrum antiviral properties making it appealing as a therapeutic for prophylactic or early post-exposure treatment.

Full text: Available Collection: Preprints Database: EuropePMC Topics: Vaccines / Variants Language: English Year: 2022 Document Type: Preprint

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Preprints Database: EuropePMC Topics: Vaccines / Variants Language: English Year: 2022 Document Type: Preprint