Your browser doesn't support javascript.
Toilets dominate environmental detection of SARS-CoV-2 virus in a hospital (preprint)
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.04.03.20052175
ABSTRACT

Background:

Respiratory and faecal aerosols play a suspected role in transmitting the SARS-CoV-2 virus. We performed extensive environmental sampling in a dedicated hospital building for Covid-19 patients in both toilet and non-toilet environments, and analysed the associated environmental factors.

Methods:

We collected data of the Covid-19 patients. 107 surface samples, 46 air samples, two exhaled condensate samples, and two expired air samples were collected were collected within and beyond the four three-bed isolation rooms. We reviewed the environmental design of the building and the cleaning routines. We conducted field measurement of airflow and CO2 concentrations.

Findings:

The 107 surface samples comprised 37 from toilets, 34 from other surfaces in isolation rooms (ventilated at 30-60 L/s), and 36 from other surfaces outside isolation rooms in the hospital. Four of these samples were positive, namely two ward door-handles, one bathroom toilet-seat cover and one bathroom door-handle; and three were weakly positive, namely one bathroom toilet seat, one bathroom washbasin tap lever and one bathroom ceiling-exhaust louvre. One of the 46 air samples was weakly positive, and this was a corridor air sample. The two exhaled condensate samples and the two expired air samples were negative.

Interpretation:

The faecal-derived aerosols in patients' toilets contained most of the detected SARS-CoV-2 virus in the hospital, highlighting the importance of surface and hand hygiene for intervention.
Subject(s)

Full text: Available Collection: Preprints Database: medRxiv Main subject: COVID-19 Language: English Year: 2020 Document Type: Preprint

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Preprints Database: medRxiv Main subject: COVID-19 Language: English Year: 2020 Document Type: Preprint