Your browser doesn't support javascript.
Neutrophil calprotectin identifies severe pulmonary disease in COVID-19 (preprint)
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.05.06.20093070
ABSTRACT
Severe cases of coronavirus disease 2019 (COVID-19) are regularly complicated by respiratory failure. While it has been suggested that elevated levels of blood neutrophils associate with worsening oxygenation in COVID-19, it is unknown whether neutrophils are drivers of the thrombo-inflammatory storm or simple bystanders. To better understand the potential role of neutrophils in COVID-19, we measured levels of the neutrophil activation marker S100A8/A9 (calprotectin) in hospitalized patients and determined its relationship to severity of illness and respiratory status. Patients with COVID-19 (n=172) had markedly elevated levels of calprotectin in their blood. Calprotectin tracked with other acute phase reactants including C-reactive protein, ferritin, lactate dehydrogenase, and absolute neutrophil count, but was superior in identifying patients requiring mechanical ventilation. In longitudinal samples, calprotectin rose as oxygenation worsened. When tested on day 1 or 2 of hospitalization (n=94 patients), calprotectin levels were significantly higher in patients who progressed to severe COVID-19 requiring mechanical ventilation (8039 +/- 7031 ng/ml, n=32) as compared to those who remained free of intubation (3365 +/- 3146, p<0.0001). In summary, serum calprotectin levels track closely with current and future COVID-19 severity, implicating neutrophils as potential perpetuators of inflammation and respiratory compromise in COVID-19.
Subject(s)

Full text: Available Collection: Preprints Database: medRxiv Main subject: Respiratory Insufficiency / Critical Illness / COVID-19 / Inflammation Language: English Year: 2020 Document Type: Preprint

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Preprints Database: medRxiv Main subject: Respiratory Insufficiency / Critical Illness / COVID-19 / Inflammation Language: English Year: 2020 Document Type: Preprint