Your browser doesn't support javascript.
Using mobile phone data for epidemiological simulations of lockdowns: government interventions, behavioral changes, and resulting changes of reinfections
Sebastian A Müller; Michael Balmer; Billy Charlton; Ricardo Ewert; Andreas Neumann; Christian Rakow; Tilmann Schlenther; Kai Nagel.
  • Sebastian A Müller; TU Berlin
  • Michael Balmer; Senozon AG Switzerland
  • Billy Charlton; TU Berlin
  • Ricardo Ewert; TU Berlin
  • Andreas Neumann; Senozon Deutschland GmbH
  • Christian Rakow; TU Berlin
  • Tilmann Schlenther; TU Berlin
  • Kai Nagel; TU Berlin
Preprint in English | medRxiv | ID: ppmedrxiv-20160093
ABSTRACT
Epidemiological simulations as a method are used to better understand and predict the spreading of infectious diseases, for example of COVID-19. This paper presents an approach that combines person-centric data-driven human mobility modelling with a mechanistic infection model and a person-centric disease progression model. Results show that in Berlin (Germany), behavioral changes of the population mostly happened before the government-initiated so-called contact ban came into effect. Also, the model is used to determine differentiated changes to the reinfection rate for different interventions such as reductions in activity participation, the wearing of masks, or contact tracing followed by quarantine-at-home. One important result is that successful contact tracing reduces the reinfection rate by about 30 to 40%, and that if contact tracing becomes overwhelmed then infection rates immediately jump up accordingly, making rather strong lockdown measures necessary to bring the reinfection rate back to below one.
Full text: Available Collection: Preprints Database: medRxiv Type of study: Prognostic study Language: English Year: 2020 Document Type: Preprint

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Collection: Preprints Database: medRxiv Type of study: Prognostic study Language: English Year: 2020 Document Type: Preprint