Your browser doesn't support javascript.
Adaptive COVID-19 Forecasting via Bayesian Optimization (preprint)
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.10.19.20215293
ABSTRACT
Accurate forecasts of infections for localized regions are valuable for policy making and medical capacity planning. Existing compartmental and agent-based models for epidemiological forecasting employ static parameter choices and cannot be readily contextualized, while adaptive solutions focus primarily on the reproduction number. In the current work, we propose a novel model-agnostic Bayesian optimization approach for learning model parameters from observed data that generalizes to multiple application-specific fidelity criteria. Empirical results demonstrate the efficacy of the proposed approach with SEIR-like compartmental models on COVID-19 case forecasting tasks. A city-level forecasting system based on this approach is being used for COVID-19 response in a few highly impacted Indian cities.
Subject(s)

Full text: Available Collection: Preprints Database: medRxiv Main subject: COVID-19 Language: English Year: 2020 Document Type: Preprint

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Preprints Database: medRxiv Main subject: COVID-19 Language: English Year: 2020 Document Type: Preprint