Your browser doesn't support javascript.
An optimised protocol for detection of SARS-COV-2 in stool (preprint)
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.01.11.20248606
ABSTRACT
AimSARS-CoV-2 has been detected in stool samples of COVID-19 patients, with potential implications for faecal-oral transmission. Compared to swab samples, the complexity of the stool matrix poses a challenge in the detection of the virus that has not yet been solved. The aim of this study was to establish a sensitive and reliable method for detecting SARS-CoV-2 in stool samples. MethodsStool samples from individuals free of SARS-CoV-2 were homogenised in saline buffer and spiked with a known titre of inactivated virus ranging from 50 to 750 viral particles per 100 mg stool. Debris was removed via centrifugation and supernatants were concentrated by ultrafiltration. RNA was then extracted from the concentrated material using a commercial kit and SARS-CoV-2 was detected via real-time reverse-transcription polymerase chain reaction (RT-qPCR) using the CDC primers and probes. ResultsThe RNA extraction procedure we used allowed the detection of SARS-CoV-2 via RT-qPCR in most of the stool samples tested. We could detect as few as 50 viral particles per 100 mg of stool. However, high variability was observed across samples at low viral titres. The primer set targeting the N1 region provided more reliable and precise results and for this primer set our method had a limit of detection of 1 viral particle per mg of stool. ConclusionsHere we describe a sensitive method for detecting SARS-CoV-2 in stool samples. This method can be used to establish the persistence of SARS-CoV-2 in stool and ensure the safety of clinical practices such as faecal microbiota transplant (FMT).
Subject(s)

Full text: Available Collection: Preprints Database: medRxiv Main subject: COVID-19 Language: English Year: 2021 Document Type: Preprint

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Preprints Database: medRxiv Main subject: COVID-19 Language: English Year: 2021 Document Type: Preprint