Your browser doesn't support javascript.
Inactivation of SARS-CoV-2 virus in saliva using a guanidium based transport medium suitable for RT-PCR diagnostic assays (preprint)
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.01.15.21249891
ABSTRACT
BackgroundUpper respiratory samples used to test for SARS-CoV-2 virus may be infectious and present a hazard during transport and testing. A buffer with the ability to inactivate SARS-CoV-2 at the time of sample collection could simplify and expand testing for COVID-19 to non-conventional settings. MethodsWe evaluated a guanidium thiocyanate-based buffer, eNAT (Copan) as a possible transport and inactivation medium for downstream RT-PCR testing to detect SARS-CoV-2. Inactivation of SARS-CoV-2 USA-WA1/2020 in eNAT and in diluted saliva was studied at different incubation times. The stability of viral RNA in eNAT was also evaluated for up to 7 days at room temperature (28{degrees}C), refrigerated conditions (4{degrees}C) and at 35{degrees}C. ResultsSARS-COV-2 virus spiked directly in eNAT could be inactivated at >5.6 log10 PFU/ml within a minute of incubation. When saliva was diluted 11 in eNAT, no cytopathic effect (CPE) on vero-E6 cell lines was observed, although SARS-CoV-2 RNA could be detected even after 30 min incubation and after two cell culture passages. A 12 (salivaeNAT) dilution abrogated both CPE and detectable viral RNA after as little as 5 min incubation in eNAT. SARS-CoV-2 RNA from virus spiked at 5X the limit of detection remained positive up to 7 days of incubation in all tested conditions. ConclusioneNAT and similar guanidinium thiocyanate-based media may be of value for transport, preservation, and processing of clinical samples for RT-PCR based SARS-CoV-2 detection.
Subject(s)

Full text: Available Collection: Preprints Database: medRxiv Main subject: COVID-19 Language: English Year: 2021 Document Type: Preprint

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Preprints Database: medRxiv Main subject: COVID-19 Language: English Year: 2021 Document Type: Preprint