Your browser doesn't support javascript.
In vivo kinetics of SARS-CoV-2 infection and its relationship with a person's infectiousness (preprint)
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.06.26.21259581
ABSTRACT
The within-host viral kinetics of SARS-CoV-2 infection and how they relate to a person's infectiousness are not well understood. This limits our ability to quantify the impact of interventions on viral transmission. Here, we develop data-driven viral dynamic models of SARS-CoV-2 infection and estimate key within-host parameters such as the infected cell half-life and the within-host reproductive number. We then develop a model linking viral load (VL) to infectiousness, showing that infectiousness increases sub-linearly with VL. We show that the logarithm of the VL in the upper respiratory tract (URT) is a better surrogate of infectiousness than the VL itself. Using data on VL and the predicted infectiousness, we further incorporated data on antigen and reverse transcription polymerase chain reaction (RT-PCR) tests and compared their usefulness in detecting infection and preventing transmission. We found that RT-PCR tests perform better than antigen tests assuming equal testing frequency; however, more frequent antigen testing may perform equally well with RT-PCR tests at a lower cost, but with many more false-negative tests. Overall, our models provide a quantitative framework for inferring the impact of therapeutics and vaccines that lower VL on the infectiousness of individuals and for evaluating rapid testing strategies.
Subject(s)

Full text: Available Collection: Preprints Database: medRxiv Main subject: COVID-19 Language: English Year: 2021 Document Type: Preprint

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Preprints Database: medRxiv Main subject: COVID-19 Language: English Year: 2021 Document Type: Preprint