Your browser doesn't support javascript.
ABSTRACT
CD8+ T cells are critical for the elimination and long-lasting protection of many viral infections, but their role in the current SARS-CoV-2 pandemic is unclear. Emerging data indicates that SARS-CoV-2-specific CD8+ T cells are detectable in the majority of individuals recovering from SARS-CoV-2 infection. However, optimal virus-specific epitopes, the role of pre-existing heterologous immunity as well as their kinetics and differentiation program during disease control have not been defined in detail. Here, we show that both pre-existing and newly induced SARS-CoV-2-specific CD8+ T-cell responses are potentially important determinants of immune protection in mild SARS-CoV-2 infection. In particular, our results can be summarized as follows First, immunodominant SARS-CoV-2-specific CD8+ T-cell epitopes are targeted in the majority of individuals with convalescent SARS-CoV-2 infection. Second, MHC class I tetramer analyses revealed the emergence of phenotypically diverse and functionally competent pre-existing and newly induced SARS-CoV-2-specific memory CD8+ T cells that showed similar characteristics compared to influenza-specific CD8+ T cells. Third, SARS-CoV-2-specific CD8+ T-cell responses are more robustly detectable than antibodies against the SARS-CoV-2-spike protein. This was confirmed in a longitudinal analysis of acute-resolving infection that demonstrated rapid induction of the SARS-CoV-2-specific CD8+ T cells within a week followed by a prolonged contraction phase that outlasted the waning humoral immune response indicating that CD8+ T-cell responses might serve as a more precise correlate of antiviral immunity than antibody measurements after convalescence. Collectively, these data provide new insights into the fine specificity, heterogeneity, and dynamics of SARS-CoV-2-specific memory CD8+ T cells, potentially informing the rational development of a protective vaccine against SARS-CoV-2.
Subject(s)

Full text: Available Collection: Preprints Database: bioRxiv Main subject: Virus Diseases / COVID-19 Language: English Year: 2020 Document Type: Preprint

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Preprints Database: bioRxiv Main subject: Virus Diseases / COVID-19 Language: English Year: 2020 Document Type: Preprint