Your browser doesn't support javascript.
ABSTRACT
The RNA polymerase inhibitor, favipiravir, is currently in clinical trials as a treatment for infection with SARS-CoV-2, despite limited information about the molecular basis for its activity. Here we report the structure of favipiravir ribonucleoside triphosphate (favipiravir-RTP) in complex with the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) bound to a templateprimer RNA duplex, determined by electron cryomicroscopy (cryoEM) to a resolution of 2.5 Ang. The structure shows clear evidence for the inhibitor at the catalytic site of the enzyme, and resolves the conformation of key side chains and ions surrounding the binding pocket. Polymerase activity assays indicate that the inhibitor is weakly incorporated into the RNA primer strand, and suppresses RNA replication in the presence of natural nucleotides. The structure reveals an unusual, non-productive binding mode of favipiravir-RTP at the catalytic site of SARS-CoV2 RdRp which explains its low rate of incorporation into the RNA primer strand. Together, these findings inform current and future efforts to develop polymerase inhibitors for SARS coronaviruses.

Full text: Available Collection: Preprints Database: bioRxiv Language: English Year: 2020 Document Type: Preprint

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Preprints Database: bioRxiv Language: English Year: 2020 Document Type: Preprint