Your browser doesn't support javascript.
ABSTRACT
The COVID-19 pandemic has caused over one million deaths thus far. There is an urgent need for the development of specific viral therapeutics and a vaccine. SARS-CoV-2 nucleocapsid (N) protein is highly expressed upon infection and is essential for viral replication, making it a promising target for both antiviral drug and vaccine development. Here, starting from a functional proteomics workflow, we initially catalogued the protein-protein interactions of 21 SARS-CoV-2 proteins in HEK293 cells, finding that the stress granule resident proteins G3BP1 and G3BP2 co-purify with N with high specificity. We demonstrate that N protein expression of in human cells sequesters G3BP1 and G3BP2 through its physical interaction with these proteins, attenuating stress granule (SG) formation. The ectopic expression of G3BP1 in N-expressing cells was sufficient to reverse this phenotype. Since N is an RNA-binding protein, we performed iCLIP- sequencing experiments in cells, with or without exposure to oxidative stress, to identify the host RNAs targeted by N. Our results indicate that SARS-CoV-2 N protein binds directly to thousands of host mRNAs under both conditions. Like the G3BPs stress granule proteins, N was found to predominantly bind its target mRNAs in their 3UTRs. RNA sequencing experiments indicated that expression of N results in wide-spread gene expression changes in both unstressed and oxidatively stressed cells. We suggest that N regulates host gene expression by both attenuating stress granules and binding directly to target mRNAs.
Subject(s)

Full text: Available Collection: Preprints Database: bioRxiv Main subject: COVID-19 Language: English Year: 2020 Document Type: Preprint

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Preprints Database: bioRxiv Main subject: COVID-19 Language: English Year: 2020 Document Type: Preprint