Your browser doesn't support javascript.
Gamma-irradiated SARS-CoV-2 vaccine candidate, OZG-38.61.3, confers protection from SARS-CoV-2 challenge in human ACEII-transgenic mice (preprint)
Raife Dilek Turan; Cihan Tastan; Derya Dilek Kancagi; Bulut Yurtsever; Gozde Sir Karakus; Samed Ozer; Selen Abanuz; Didem Cakirsoy; Gamze Tumentemur; Sevda Demir; Utku Seyis; Recai Kuzay; Muhammer Elek; Gurcan Ertop; Serap Arbak; Merve Acikel Elmas; Cansu Hemsinlioglu; Ozden Hatirnaz Ng; Sezer Akyoney; Ilayda Sahin; Cavit Kerem Kayhan; Fatma Tokat; Gurler Akpinar; Murat Kasap; Ayse Sesin Kocagoz; Ugur Ozbek; Dilek Telci; Fikrettin Sahin; Koray Yalcin; Siret Ratip; Umit Ince; Guldal Suyen; Ercument Ovali; Liam Fergusson; Marta Conti; Marius Rameil; Vanessa Nakonecnij; Jakob Vanhoefer; Leonard Schmiester; Muying Wang; Emily E Ackerman; Jason E Shoemaker; Jeremy Zucker; Kristie L Oxford; Jeremy Teuton; Ebru Kocakaya; Gokce Yagmur Summak; Kristina Hanspers; Martina Kutmon; Susan Coort; Lars Eijssen; Friederike Ehrhart; Rex D. A. B.; Denise Slenter; Marvin Martens; Robin Haw; Bijay Jassal; Lisa Matthews; Marija Orlic-Milacic; Andrea Senff-Ribeiro; Karen Rothfels; Veronica Shamovsky; Ralf Stephan; Cristoffer Sevilla; Thawfeek Mohamed Varusai; Jean-Marie Ravel; Vera Ortseifen; Silvia Marchesi; Piotr Gawron; Ewa Smula; Laurent Heirendt; Venkata Satagopam; Guanming Wu; Anders Riutta; Martin Golebiewski; Stuart Owen; Carole Goble; Xiaoming Hu; Rupert Overall; Dieter Maier; Angela Bauch; John A Bachman; Benjamin M Gyori; Carlos Vega; Valentin Groues; Miguel Vazquez; Pablo Porras; Luana Licata; Marta Iannuccelli; Francesca Sacco; Denes Turei; Augustin Luna; Ozgun Babur; Sylvain Soliman; Alberto Valdeolivas; Marina Esteban-Medina; Maria Pena-Chilet; Tomas Helikar; Bhanwar Lal Puniya; Anastasia Nesterova; Anton Yuryev; Anita de Waard; Dezso Modos; Agatha Treveil; Marton Laszlo Olbei; Bertrand De Meulder; Aurelien Naldi; Aurelien Dugourd; Laurence Calzone; Chris Sander; Emek Demir; Tamas Korcsmaros; Tom C Freeman; Franck Auge; Jacques S Beckmann; Jan Hasenauer; Olaf Wolkenhauer; Egon Willighagen; Alexander R Pico; Chris Evelo; Lincoln D Stein; Henning Hermjakob; Julio Saez-Rodriguez; Joaquin Dopazo; Alfonso Valencia; Hiroaki Kitano; Emmanuel Barillot; Charles Auffray; Rudi Balling; Reinhard Schneider; - the COVID-19 Disease Map Community.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.28.356667
ABSTRACT
The SARS-CoV-2 virus caused one of the severest pandemic around the world. The vaccine development for urgent use became more of an issue during the pandemic. An inactivated virus formulated vaccines such as Hepatitis A, inactivated polio, and influenza has been proven to be a reliable approach for immunization for long years. In this pandemic, we produced an inactivated SARS-CoV-2 vaccine candidate by modification of the oldest but the most experienced method that can be produced quickly and tested easily rather than the recombinant vaccines. Here, we optimized an inactivated virus vaccine which includes the gamma irradiation process for the inactivation as an alternative to classical chemical inactivation methods so that there is no extra purification required. Also, we applied the vaccine candidate (OZG-38.61.3) using the intradermal route in mice which decreased the requirement of a higher concentration of inactivated virus for proper immunization unlike most of the classical inactivated vaccine treatments. Thus, the novelty of our vaccine candidate (OZG-38.61.3) is a non-adjuvant added, gamma-irradiated, and intradermally applied inactive viral vaccine. We first determined the efficiency and safety dose (either 1013 or 1014 viral copy per dose) of the OZG-38.61.3 in Balb/c mice. Next, to test the immunogenicity and protective efficacy of the OZG-38.61.3, we immunized human ACE2-encoding transgenic mice and infected them with a dose of infective SARS-CoV-2 virus for the challenge test. We showed that the vaccinated mice showed lowered SARS-CoV-2 viral copy number in oropharyngeal specimens along with humoral and cellular immune responses against the SARS-CoV-2, including the neutralizing antibodies similar to those shown in Balb/c mice without substantial toxicity. This study encouraged us towards a new promising strategy for inactivated vaccine development (OZG-38.61.3) and the Phase 1 clinical trial for the COVID-19 pandemic.
Subject(s)

Full text: Available Collection: Preprints Database: bioRxiv Main subject: Severe Acute Respiratory Syndrome / Drug-Related Side Effects and Adverse Reactions / Chemical and Drug Induced Liver Injury / COVID-19 Language: English Year: 2020 Document Type: Preprint

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Preprints Database: bioRxiv Main subject: Severe Acute Respiratory Syndrome / Drug-Related Side Effects and Adverse Reactions / Chemical and Drug Induced Liver Injury / COVID-19 Language: English Year: 2020 Document Type: Preprint