Your browser doesn't support javascript.
The hydroalcoholic extract of Uncaria tomentosa (Cat's claw) inhibits the replication of novel coronavirus (SARS-CoV-2) in vitro (preprint)
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.09.372201
ABSTRACT
The coronavirus disease 2019 (COVID-19) has become a serious problem for public health since it was identified in the province of Wuhan (China) and spread around the world producing high mortality rates and economic losses. Nowadays, WHO recognizes traditional, complementary, and alternative medicine for treating COVID-19 symptoms. Therefore, we investigated the antiviral potential of the hydroalcoholic extract of Uncaria tomentosa stem bark from Peru against SARS-CoV-2 in vitro. The antiviral activity of U. tomentosa against SARS-CoV-2 in vitro was assessed in Vero E6 cells using cytopathic effect (CPE) and plaque reduction assay. After 48h of treatment, U. tomentosa showed an inhibition of 92.7 % of SARS-CoV-2 at 25.0 g/mL (p<0.0001) by plaque reduction assay on Vero E6 cells. In addition, U. tomentosa, induced a reduction of 98.6 % (p=0.02) and 92.7 % (p=0.03) in the CPE caused by SARS-CoV-2 on Vero E6 cells at 25 g/mL and 12.5 g/mL, respectively. The EC50 calculated for U. tomentosa extract by plaque reduction assay was 6.6 g/mL (4.89 - 8.85 g/mL) for a selectivity index of 4.1. The EC50 calculated for U. tomentosa extract by TCID50 assay was 2.57 g/mL (1.05 - 3.75 g/mL) for a selectivity index of 10.54. These results showed thatU. tomentosa known as Cat's claw has antiviral effect against SARS-CoV-2 observed as a reduction in the viral titer and CPE after 48h of treatment on Vero E6 cells. Therefore, we hypothesized that U. tomentosa stem bark, could be promissory to the development of new therapeutic strategies against SARS-CoV-2.
Subject(s)

Full text: Available Collection: Preprints Database: bioRxiv Main subject: COVID-19 Language: English Year: 2020 Document Type: Preprint

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Preprints Database: bioRxiv Main subject: COVID-19 Language: English Year: 2020 Document Type: Preprint