Your browser doesn't support javascript.
ABSTRACT
Circular RNAs (circRNAs) encoded by DNA genomes have been identified across host and pathogen species as parts of the transcriptome. Accumulating evidences indicate that circRNAs play critical roles in autoimmune diseases and viral pathogenesis. Here we report that RNA viruses of the Betacoronavirus genus of Coronaviridae, SARS-CoV-2, SARS-CoV and MERS-CoV, encode a novel type of circRNAs. Through de novo circRNA analyses of publicly available coronavirus-infection related deep RNA-Sequencing data, we identified 351, 224 and 2,764 circRNAs derived from SARS-CoV-2, SARS-CoV and MERS-CoV, respectively, and characterized two major back-splice events shared by these viruses. Coronavirus-derived circRNAs are more abundant and longer compared to host genome-derived circRNAs. Using a systematic strategy to amplify and identify back-splice junction sequences, we experimentally identified over 100 viral circRNAs from SARS-CoV-2 infected Vero E6 cells. This collection of circRNAs provided the first line of evidence for the abundance and diversity of coronavirus-derived circRNAs and suggested possible mechanisms driving circRNA biogenesis from RNA genomes. Our findings highlight circRNAs as an important component of the coronavirus transcriptome. SummaryWe report for the first time that abundant and diverse circRNAs are generated by SARS-CoV-2, SARS-CoV and MERS-CoV and represent a novel type of circRNAs that differ from circRNAs encoded by DNA genomes.
Subject(s)

Full text: Available Collection: Preprints Database: bioRxiv Main subject: Autoimmune Diseases / Coronavirus Infections / Severe Acute Respiratory Syndrome Language: English Year: 2020 Document Type: Preprint

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Preprints Database: bioRxiv Main subject: Autoimmune Diseases / Coronavirus Infections / Severe Acute Respiratory Syndrome Language: English Year: 2020 Document Type: Preprint