Your browser doesn't support javascript.
The SARS-CoV-2 spike protein disrupts the cooperative function of human cardiac pericytes - endothelial cells through CD147 receptor-mediated signalling: a potential non-infective mechanism of COVID-19 microvascular disease (preprint)
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.21.423721
ABSTRACT

Background:

Severe coronavirus disease 2019 (COVID-19) manifests as a life-threatening microvascular syndrome. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uses primarily the capsid spike (S) protein to engage with its receptors and infect host cells. To date, it is still not known if the S protein alone, without the other viral elements, is able to trigger vascular cell signalling and provoke cell dysfunction.

Methods:

We investigated the effects of the recombinant, stabilised S protein on primary human cardiac pericytes (PCs) signalling and function. Endpoints included cell viability, proliferation, migration, cooperation with endothelial cells (ECs) in angiogenesis assays, and release of pro-inflammatory cytokines. Adopting a blocking strategy against the S protein receptors ACE2 and CD147, we explored which receptor mediates the S protein signalling in PCs.

Findings:

We show, for the first time, that the recombinant S protein alone elicits functional alterations in cardiac PCs. This was documented as (1) increased migration, (2) reduced ability to support EC network formation on Matrigel, (3) secretion of pro-inflammatory molecules typically involved in the cytokine storm; and (4) production of pro-apoptotic factors responsible for EC death. Furthermore, the S protein stimulates the phosphorylation/activation of the extracellular signal-regulated kinase 1/2 (ERK1/2) through the CD147 receptor, but not ACE2, in cardiac PCs. Accordingly, the neutralization of CD147, using a blocking antibody, prevented the activation of ERK1/2 and partially rescued the PC function in the presence of the S protein.

Interpretation:

Our findings suggest the new, intriguing hypothesis that the S protein may elicit vascular cell dysfunction, potentially amplifying, or perpetuating, the damage caused by the whole coronavirus. This mechanism may have clinical and therapeutic implication.
Subject(s)

Full text: Available Collection: Preprints Database: bioRxiv Main subject: Carcinoma, Renal Cell / Microvascular Angina / Coronavirus Infections / Death / COVID-19 / Heart Diseases Language: English Year: 2020 Document Type: Preprint

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Preprints Database: bioRxiv Main subject: Carcinoma, Renal Cell / Microvascular Angina / Coronavirus Infections / Death / COVID-19 / Heart Diseases Language: English Year: 2020 Document Type: Preprint