Your browser doesn't support javascript.
Structural characterization of cocktail-like targeting polysaccharides from Ecklonia kurome Okam and their anti-SARS-CoV-2 activities in vitro (preprint)
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.14.426521
ABSTRACT
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological agent responsible for the worldwide coronavirus disease 2019 (COVID-19) outbreak. Investigation has confirmed that polysaccharide heparan sulfate can bind to the spike protein and block SARS-CoV-2 infection. Theoretically, similar structure of nature polysaccharides may also have the impact on the virus. Indeed, some marine polysaccharide has been reported to inhibit SARS-Cov-2 infection in vitro, however the convinced targets and mechanism are still vague. By high throughput screening to target 3CLpro enzyme, a key enzyme that plays a pivotal role in the viral replication and transcription using nature polysaccharides library, we discover the mixture polysaccharide 375 from seaweed Ecklonia kurome Okam completely block 3Clpro enzymatic activity (IC50, 0.48 {micro}M). Further, the homogeneous polysaccharide 37502 from the 375 may bind to 3CLpro molecule well (kD value 4.23 x 10-6). Very interestingly, 37502 also can potently disturb spike protein binding to ACE2 receptor (EC50, 2.01 {micro}M). Importantly, polysaccharide 375 shows good anti-SARS-CoV-2 infection activity in cell culture with EC50 values of 27 nM (99.9% inhibiting rate at the concentration of 20 {micro}g/mL), low toxicity (LD50 136 mg/Kg on mice). By DEAE ion-exchange chromatography, 37501, 37502 and 37503 polysaccharides are purified from native 375. Bioactivity test show that 37501 and 37503 may impede SARS-Cov-2 infection and virus replication, however their individual impact on the virus is significantly less that of 375. Surprisingly, polysaccharide 37502 has no inhibition effect on SARS-Cov-2. The structure study based on monosaccharide composition, methylation, NMR spectrum analysis suggest that 375 contains guluronic acid, mannuronic acid, mannose, rhamnose, glucouronic acid, galacturonic acid, glucose, galactose, xylose and fucose with ratio of 1.86 9.56 6.81 1.69 1.00 1.75 1.19 11.06 4.31 23.06. However, polysaccharide 37502 is an aginate which composed of mannuronic acid (89.3 %) and guluronic acid (10.7 %), with the molecular weight (Mw) of 27.9 kDa. These results imply that mixture polysaccharides 375 works better than the individual polysaccharide on SARS-Cov-2 may be the cocktail-like polysaccharide synergistic function through targeting multiple key molecules implicated in the virus infection and replication. The results also suggest that 375 may be a potential drug candidate against SARS-CoV-2.
Subject(s)

Full text: Available Collection: Preprints Database: bioRxiv Main subject: Tumor Virus Infections / Severe Acute Respiratory Syndrome / COVID-19 / Oculocerebrorenal Syndrome Language: English Year: 2021 Document Type: Preprint

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Preprints Database: bioRxiv Main subject: Tumor Virus Infections / Severe Acute Respiratory Syndrome / COVID-19 / Oculocerebrorenal Syndrome Language: English Year: 2021 Document Type: Preprint