Your browser doesn't support javascript.
ABSTRACT
We present a structure-based model of phosphorylation-dependent binding and sequestration of SARS-CoV-2 nucleocapsid protein and the impact of two consecutive amino acid changes R203K and G204R. Additionally, we studied how mutant strains affect HLA-specific antigen presentation and correlated these findings with HLA allelic population frequencies. We discovered RG>KR mutated SARS-CoV-2 expands the ability for differential expression of the N protein epitope on Major Histocompatibility Complexes (MHC) of varying Human Leukocyte Antigen (HLA) origin. The N protein LKR region K203, R204 of wild type (SARS-CoVs) and (SARS-CoV-2) observed HLA-A*3001 and HLA-A*3021, but mutant SARS-CoV-2 observed HLA-A*3101 and HLA-A*6801. Expression of HLA-A genotypes associated with the mutant strain occurred more frequently in all populations studied. ImportanceThe novel coronavirus known as SARS-CoV-2 causes a disease renowned as 2019-nCoV (or COVID-19). HLA allele frequencies worldwide could positively correlate with the severity of coronavirus cases and a high number of deaths.
Subject(s)

Full text: Available Collection: Preprints Database: bioRxiv Main subject: Death / Severe Acute Respiratory Syndrome / COVID-19 Language: English Year: 2021 Document Type: Preprint

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Preprints Database: bioRxiv Main subject: Death / Severe Acute Respiratory Syndrome / COVID-19 Language: English Year: 2021 Document Type: Preprint