Your browser doesn't support javascript.
How immunity from and interaction with seasonal coronaviruses can shape SARS-CoV-2 epidemiology (preprint)
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.27.21257032
ABSTRACT
We hypothesised that cross-protection from seasonal epidemics of human coronaviruses (HCoVs) could have affected SARS-CoV-2 transmission, including generating reduced susceptibility in children. To determine what the pre-pandemic distribution of immunity to HCoVs was, we fitted a mathematical model to 6 years of seasonal coronavirus surveillance data from England and Wales. We estimated a duration of immunity to seasonal HCoVs of 7.3 years (95%CI 6.8 - 7.9) and show that, while cross-protection between HCoV and SARS-CoV-2 may contribute to the age distribution, it is insufficient to explain the age pattern of SARS-CoV-2 infections in the first wave of the pandemic in England and Wales. Projections from our model illustrate how different strengths of cross-protection between circulating coronaviruses could determine the frequency and magnitude of SARS-CoV-2 epidemics over the coming decade, as well as the potential impact of cross-protection on future seasonal coronavirus transmission.
Subject(s)

Full text: Available Collection: Preprints Database: medRxiv Main subject: Severe Acute Respiratory Syndrome / COVID-19 Language: English Year: 2021 Document Type: Preprint

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Preprints Database: medRxiv Main subject: Severe Acute Respiratory Syndrome / COVID-19 Language: English Year: 2021 Document Type: Preprint