Your browser doesn't support javascript.
ABSTRACT
The commensal microflora is a source for multiple antigens that may induce cross-reactive antibodies against host proteins and pathogens. However, whether commensal bacteria can induce cross-reactive antibodies against SARS-CoV-2 remains unknown. Here we report that several commensal bacteria contribute to the generation of cross-reactive IgA antibodies against the receptor-binding domain (RBD) of the SARS-CoV-2 Spike protein. We identified SARS-CoV-2 unexposed individuals with RBD-binding IgA antibodies at their mucosal surfaces. Conversely, neutralising monoclonal anti-RBD antibodies recognised distinct commensal bacterial species. Some of these bacteria, such as Streptococcus salivarius, induced a cross-reactive anti-RBD antibodies upon supplementation in mice. Conversely, severely ill COVID-19 patients showed reduction of Streptococcus and Veillonella in their oropharynx and feces and a reduction of anti-RBD IgA at mucosal surfaces. Altogether, distinct microbial species of the human microbiota can induce secretory IgA antibodies cross-reactive for the RBD of SARS-CoV-2.
Subject(s)

Full text: Available Collection: Preprints Database: bioRxiv Main subject: Pneumococcal Infections / Severe Acute Respiratory Syndrome / COVID-19 Language: English Year: 2021 Document Type: Preprint

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Preprints Database: bioRxiv Main subject: Pneumococcal Infections / Severe Acute Respiratory Syndrome / COVID-19 Language: English Year: 2021 Document Type: Preprint