Your browser doesn't support javascript.
Compositional analysis of Sindbis virus ribonucleoproteins reveals an extensive co-opting of key nuclear RNA-binding proteins (preprint)
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.10.06.463336
ABSTRACT
The expansion of tropical mosquito habitats and associated arboviruses is a risk for human health, and it thus becomes fundamental to identify new antiviral strategies. In this study we employ a new approach to elucidate the composition of the ribonucleoproteins (RNPs) of a prototypical arbovirus called Sindbis (SINV). SINV RNPs contain 453 cellular and 6 viral proteins, many of these proteins are nuclear in uninfected cells and redistribute to the cytoplasm upon infection. These findings suggest that SINV RNAs act as spiderwebs, capturing host factors required for viral replication and gene expression in the cytoplasm. Functional perturbation of several of these host proteins causes profound effects in virus infection, as illustrated here with the tRNA ligase complex. Moreover, inhibition of viral RNP components with available drugs hampers the infection of a wide range of viruses, opening new avenues for the development of broad-spectrum therapies. Research highlightsO_LISINV RNA interactome includes 453 cellular and 6 viral proteins. C_LIO_LINuclear RBPs that interact with SINV RNA are selectively redistributed to the cytoplasm upon infection C_LIO_LIThe tRNA ligase complex plays major regulatory roles in SINV and SARS-CoV- 2 replication C_LIO_LIThe SINV RNA interactome is enriched in pan-viral regulators with therapeutic potential. C_LI

Full text: Available Collection: Preprints Database: bioRxiv Language: English Year: 2021 Document Type: Preprint

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Preprints Database: bioRxiv Language: English Year: 2021 Document Type: Preprint