Your browser doesn't support javascript.
Efficient incorporation and template-dependent polymerase inhibition are major determinants for the broad-spectrum antiviral activity of remdesivir (preprint)
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.10.14.464416
ABSTRACT
Remdesivir (RDV) is a direct antiviral agent that is approved in several countries for the treatment of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). RDV exhibits broad-spectrum antiviral activity against positive-sense RNA viruses, e.g., SARS-CoV-2 and hepatitis C virus (HCV) and non-segmented negative-sense RNA viruses, e.g., Nipah virus (NiV), while several segmented negative-sense RNA viruses such as influenza (Flu) virus or Crimean-Congo hemorrhagic fever virus (CCHFV) are not sensitive to the drug. The reasons for this apparent pattern are unknown. Here, we expressed and purified representative RNA-dependent RNA polymerases (RdRp) and studied three biochemical parameters that have been associated with the inhibitory effects of RDV-triphosphate (TP) (i) selective incorporation of the nucleotide substrate RDV-TP, (ii) the effect of the incorporated RDV-monophosphate (MP) on primer extension, and (iii) the effect of RDV-MP in the template during incorporation of the complementary UTP. The results of this study revealed a strong correlation between antiviral effects and efficient incorporation of RDV-TP. Delayed chain-termination is heterogeneous and usually inefficient at higher NTP concentrations. In contrast, template-dependent inhibition of UTP incorporation opposite the embedded RDV-MP is seen with all polymerases. Molecular modeling suggests a steric conflict between the 1'-cyano group of RDV-MP and conserved residues of RdRp motif F. We conclude that future efforts in the development of nucleotide analogues with a broader spectrum of antiviral activities should focus on improving rates of incorporation while capitalizing on the inhibitory effects of a bulky 1'-modification.
Subject(s)

Full text: Available Collection: Preprints Database: bioRxiv Main subject: Hepatitis C / Coronavirus Infections / COVID-19 / Hemorrhagic Fever, Crimean Language: English Year: 2021 Document Type: Preprint

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Preprints Database: bioRxiv Main subject: Hepatitis C / Coronavirus Infections / COVID-19 / Hemorrhagic Fever, Crimean Language: English Year: 2021 Document Type: Preprint