Your browser doesn't support javascript.
ABSTRACT
The ongoing evolution of SARS-CoV-2 has resulted in the emergence of Omicron, which displays striking immune escape potential. Many of its mutations localize to the spike protein ACE2 receptor-binding domain, annulling the neutralizing activity of most therapeutic monoclonal antibodies. Here we describe a receptor-blocking human monoclonal antibody, 87G7, that retains ultrapotent neutralization against SARS-CoV-2 variants including the Alpha, Beta, Gamma, Delta and Omicron (BA.1/BA.2) Variants-of-Concern (VOCs). Structural analysis reveals that 87G7 targets a patch of hydrophobic residues in the ACE2-binding site that are highly conserved in SARS-CoV-2 variants, explaining its broad neutralization capacity. 87G7 protects mice and/or hamsters against challenge with all current SARS-CoV-2 VOCs. Our findings may aid the development of sustainable antibody-based strategies against COVID-19 that are more resilient to SARS-CoV-2 antigenic diversity.

Full text: Available Collection: Preprints Database: bioRxiv Language: English Year: 2022 Document Type: Preprint

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Preprints Database: bioRxiv Language: English Year: 2022 Document Type: Preprint