Your browser doesn't support javascript.
Aerosolized Ad5-nCoV booster vaccination elicited potent immune response against the SARS-CoV-2 Omicron variant after inactivated COVID-19 vaccine priming (preprint)
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.03.08.22271816
ABSTRACT
The SARS-CoV-2 Omicron variant has become the dominant SARS-CoV-2 variant around the world and exhibits immune escape to current COVID-19 vaccines to some extent due to its numerous spike mutations. Here, we evaluated the immune responses to booster vaccination with intramuscular adenovirus-vectored vaccine (Ad5-nCoV), aerosolized Ad5-nCoV, a recombinant protein subunit vaccine (ZF2001) or homologous inactivated vaccine (CoronaVac) in those who received two doses of inactivated COVID-19 vaccines 6 months prior. We found that the Ad5-nCoV booster induced potent neutralizing activity against the wild-type virus and Omicron variant, while aerosolized Ad5-nCoV generated the greatest neutralizing antibody responses against the Omicron variant at day 28 after booster vaccination, at 14.1-fold that of CoronaVac, 5.6-fold that of ZF2001 and 2.0-fold that of intramuscular Ad5-nCoV. Similarly, the aerosolized Ad5-nCoV booster produced the greatest IFNgamma T-cell response at day 14 after booster vaccination. The IFNgamma T-cell response to aerosolized Ad5-nCoV was 12.8-fold for CoronaVac, 16.5-fold for ZF2001, and 5.0-fold for intramuscular Ad5-nCoV. Aerosolized Ad5-nCoV booster also produced the greatest spike-specific B cell response. Our findings suggest that inactivated vaccine recipients should consider adenovirus-vectored vaccine boosters in China and that aerosolized Ad5-nCoV may provide a more efficient alternative in response to the spread of the Omicron variant.
Subject(s)

Full text: Available Collection: Preprints Database: medRxiv Main subject: COVID-19 Language: English Year: 2022 Document Type: Preprint

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Preprints Database: medRxiv Main subject: COVID-19 Language: English Year: 2022 Document Type: Preprint