Your browser doesn't support javascript.
Anamnestic Humoral Correlates of Immunity Across SARS-CoV-2 Variants of Concern (preprint)
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.06.19.496718
ABSTRACT
While immune correlates against SARS-CoV-2 are typically defined at peak immunogenicity following vaccination, immunologic responses that expand selectively during the anamnestic response following infection can provide mechanistic and detailed insights into the immune mechanisms of protection. Moreover, whether anamnestic correlates are conserved across VoCs, including the Delta and more distant Omicron variant of concern (VoC), remains unclear. To define the anamnestic correlates of immunity, across VOCs, we deeply profiled the humoral immune response in individuals recently infected with either the Delta or Omicron VoC. While limited acute N-terminal domain and RBD-specific immune expansion was observed following breakthrough, a significant immunodominant expansion of opsinophagocytic Spike-specific antibody responses focused largely on the conserved S2-domain of SARS-CoV-2 was observed 1 week after breakthrough infection. This S2-specific functional humoral response continued to evolve over 2-3 weeks following both Delta and Omicron breakthrough infection, targeting multiple VoCs and common coronaviruses. These responses were focused largely on the fusion peptide 2 and heptad repeat 1, both associated with enhanced rates of viral clearance. Taken together, our results point to a critical role of highly conserved, functional S2-specific responses in the control of SARS-CoV-2 infection, across VOCs, and thus humoral response linked to virus attenuation can guide next-generation generation vaccine boosting approaches to confer broad protection against future SARS-CoV-2 VoCs.
Subject(s)

Full text: Available Collection: Preprints Database: bioRxiv Main subject: Breakthrough Pain / COVID-19 Language: English Year: 2022 Document Type: Preprint

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Preprints Database: bioRxiv Main subject: Breakthrough Pain / COVID-19 Language: English Year: 2022 Document Type: Preprint