Your browser doesn't support javascript.
ABSTRACT
Emerging variants of concern (VOCs) are threatening to limit the efficacy of SARS CoV-2 monoclonal antibodies and vaccines currently used in clinical practice; broadly neutralizing antibodies and strategies for their identification are therefore urgently required. Here we demonstrate that broadly neutralizing antibodies can be isolated from peripheral blood mononuclear cells (PBMCs) of convalescent patients using SARS CoV-2 receptor binding domains (RBDs) carrying epitope-specific mutations. This is exemplified by two human antibodies, GAR05, binding to epitope class 1, and GAR12, binding to a new epitope class 6 (located between class 3 and class 5). Both antibodies broadly neutralize VOCs, exceeding the potency of the clinical monoclonal sotrovimab (mAb S309) by orders of magnitude. They also provide potent prophylactic and therapeutic in vivo protection of hACE2 mice against viral challenge. Our results indicate that exposure to Wuhan SARS-CoV-2 induces antibodies that maintain potent and broad neutralization against emerging VOCs using two unique strategies either by targeting the divergent class 1 epitope in a manner resistant to VOCs (ACE-2 mimicry, as illustrated by GAR05 and mAbs P2C-1F11/S2K14); or alternatively, by targeting rare and highly conserved epitopes, such as the new class 6 epitope identified here (as illustrated by GAR12). Our results provide guidance for next generation monoclonal antibody development and vaccine design.

Full text: Available Collection: Preprints Database: bioRxiv Language: English Year: 2022 Document Type: Preprint

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Preprints Database: bioRxiv Language: English Year: 2022 Document Type: Preprint