Your browser doesn't support javascript.
ABSTRACT
In late 2022, the SARS-CoV-2 Omicron subvariants have highly diversified, and XBB is spreading rapidly around the world. Our phylogenetic analyses suggested that XBB emerged by recombination of two co-circulating BA.2 lineages, BJ.1 and BM.1.1.1 (a progeny of BA.2.75), during the summer of 2022 around India. In vitro experiments revealed that XBB is the most profoundly resistant variant to BA.2/5 breakthrough infection sera ever and is more fusogenic than BA.2.75. Notably, the recombination breakpoint is located in the receptor-binding domain of spike, and each region of recombined spike conferred immune evasion and augmented fusogenicity to the XBB spike. Finally, the intrinsic pathogenicity of XBB in hamsters is comparable to or even lower than that of BA.2.75. Our multiscale investigation provided evidence suggesting that XBB is the first documented SARS-CoV-2 variant increasing its fitness through recombination rather than single mutations.

Full text: Available Collection: Preprints Database: bioRxiv Language: English Year: 2022 Document Type: Preprint

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Preprints Database: bioRxiv Language: English Year: 2022 Document Type: Preprint