Your browser doesn't support javascript.
Prenatal SARS-CoV-2 infection alters postpartum human milk-derived extracellular vesicles (preprint)
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.06.01.543234
ABSTRACT
Human milk-derived extracellular vesicles (HMEVs) are crucial functional components in breast milk, contributing to infant health and development. Maternal conditions could affect HMEV cargos; however, the impact of SARS-CoV-2 infection on HMEVs remains unknown. This study evaluated the influence of SARS-CoV-2 infection during pregnancy on postpartum HMEV molecules. Milk samples (9 prenatal SARS-CoV-2 vs. 9 controls) were retrieved from the IMPRINT birth cohort. After defatting and casein micelle disaggregation, 1 mL milk was subjected to a sequential process of centrifugation, ultrafiltration, and qEV-size exclusion chromatography. Particle and protein characterizations were performed following the MISEV2018 guidelines. EV lysates were analyzed through proteomics and miRNA sequencing, while the intact EVs were biotinylated for surfaceomic analysis. Multi-Omics was employed to predict HMEV functions associated with prenatal SARS-CoV-2 infection. Demographic data between the prenatal SARS-CoV-2 and control groups were similar. The median duration from maternal SARS-CoV-2 test positivity to milk collection was 3 months (range 1-6 months). Transmission electron microscopy showed the cup-shaped nanoparticles. Nanoparticle tracking analysis demonstrated particle diameters of <200 nm and yields of >1e11 particles from 1 mL milk. Western immunoblots detected ALIX, CD9 and HSP70, supporting the presence of HMEVs in the isolates. Thousands of HMEV cargos and hundreds of surface proteins were identified and compared. Multi-Omics predicted that mothers with prenatal SARS-CoV-2 infection produced HMEVs with enhanced functionalities involving metabolic reprogramming and mucosal tissue development, while mitigating inflammation and lower EV transmigration potential. Our findings suggest that SARS-CoV-2 infection during pregnancy boosts mucosal site-specific functions of HMEVs, potentially protecting infants against viral infections. Further prospective studies should be pursued to reevaluate the short- and long-term benefits of breastfeeding in the post-COVID era.
Subject(s)

Full text: Available Collection: Preprints Database: bioRxiv Main subject: Breast Neoplasms / COVID-19 / Inflammation Language: English Year: 2023 Document Type: Preprint

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Preprints Database: bioRxiv Main subject: Breast Neoplasms / COVID-19 / Inflammation Language: English Year: 2023 Document Type: Preprint