Your browser doesn't support javascript.
Comprehensive Profiling and Characterization of The Absorbed Components and Metabolites in Mice Serum and Tissues Following Oral Administration of Qingfei Paidu Decoction by UHPLC-Q-Exactive-Orbitrap HRMS (preprint)
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-136211.v1
ABSTRACT

Background:

Qingfei Paidu decoction (QFPDD) is a Chinese medicine compound formula recommended for combating corona virus disease 2019 (COVID-19) by National Health Commission of the People's Republic of China. This study aims to identify the main constituents in QFPDD and the absorbed components (including prototypes and metabolites) in serum and tissues after oral administration of QFPDD to mice.

Methods:

A practical and sensitive method of UHPLC-Q-Exactive-Orbitrap HRMS was developed to identify the chemical constituents in QFPDD and the absorbed prototypes as well as the metabolites in mice serum and tissues following oral administration of QFPDD.

Results:

A total of 405 chemicals, including 40 kinds of alkaloids, 162 kinds of flavonoids, 44 kinds of organic acids, 71 kinds of triterpene saponins and 88 kinds of other compounds in the water extract of QFPDD were tentatively identified via comparison with the retention times and MS/MS spectra of the standards or refereed by literature. With the help of the standards and in vitro metabolites, 195 chemical components (including 104 prototypes and 91 metabolites) were identified in mice serum after oral administration of QFPDD. In addition, 165, 177, 112, 120, 44, 53 constituents were identified in the lung, liver, heart, kidney, brain, and spleen of QFPDD-treated mice, respectively.

Conclusions:

An UHPLC-Q-Orbitrap HRMS based method was established for chemical profiling the constituents in QFPDD, while the absorbed prototypes and metabolites occurring in mice serum and tissues were investigated following oral administration of QFPDD. These findings provided key information and guidance for further investigation on the pharmacologically active substances and clinical applications of QFPDD.
Subject(s)

Full text: Available Collection: Preprints Database: PREPRINT-RESEARCHSQUARE Main subject: COVID-19 / Multiple Sclerosis Language: English Year: 2020 Document Type: Preprint

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Preprints Database: PREPRINT-RESEARCHSQUARE Main subject: COVID-19 / Multiple Sclerosis Language: English Year: 2020 Document Type: Preprint