Your browser doesn't support javascript.
Selective inhibition of microRNA processing by a herpesvirus-encoded microRNA triggers virus reactivation from latency (preprint)
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-820696.v1
ABSTRACT
Herpesviruses have mastered host cell modulation and immune evasion to augment productive infection, life-long latency and reactivation thereof 1,2. A long appreciated, yet elusively defined relationship exists between the lytic-latent switch and viral non-coding RNAs 3,4. Here, we identify miRNA-mediated inhibition of miRNA processing as a novel cellular mechanism that human herpesvirus 6A (HHV-6A) exploits to disrupt mitochondrial architecture, evade intrinsic host defense and drive the latent-lytic switch. We demonstrate that virus-encoded miR-aU14 selectively inhibits the processing of multiple miR-30 family members by direct interaction with the respective pri-miRNA hairpin loops. Subsequent loss of miR-30 and activation of miR-30/p53/Drp1 axis triggers a profound disruption of mitochondrial architecture, which impairs induction of type I interferons and is necessary for both productive infection and virus reactivation. Ectopic expression of miR-aU14 was sufficient to trigger virus reactivation from latency thereby identifying it as a readily drugable master regulator of the herpesvirus latent-lytic switch. Our results show that miRNA-mediated inhibition of miRNA processing represents a generalized cellular mechanism that can be exploited to selectively target individual members of miRNA families. We anticipate that targeting miR-aU14 provides exciting therapeutic options for preventing herpesvirus reactivations in HHV-6-associated disorders like myalgic encephalitis/chronic fatigue syndrome (ME/CFS) and Long-COVID.
Subject(s)

Full text: Available Collection: Preprints Database: PREPRINT-RESEARCHSQUARE Main subject: Fatigue Syndrome, Chronic Language: English Year: 2021 Document Type: Preprint

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Preprints Database: PREPRINT-RESEARCHSQUARE Main subject: Fatigue Syndrome, Chronic Language: English Year: 2021 Document Type: Preprint