Your browser doesn't support javascript.
Artificial Intelligence-Enabled Assessment of the Heart Rate Corrected QT Interval Using a Mobile Electrocardiogram Device.
Giudicessi, John R; Schram, Matthew; Bos, J Martijn; Galloway, Conner D; Shreibati, Jacqueline B; Johnson, Patrick W; Carter, Rickey E; Disrud, Levi W; Kleiman, Robert; Attia, Zachi I; Noseworthy, Peter A; Friedman, Paul A; Albert, David E; Ackerman, Michael J.
  • Giudicessi JR; Clinician-Investigator Training Program (J.R.G.), Mayo Clinic, Rochester, MN.
  • Schram M; AliveCor Inc., Mountain View, CA. (M.S., C.D.G., J.B.S., D.E.A.).
  • Bos JM; Department of Cardiovascular Medicine; Windland Smith Rice Sudden Death Genomics Laboratory, Department of Molecular Pharmacology and Experimental Therapeutics (J.M.B., M.J.A.), Mayo Clinic, Rochester, MN.
  • Galloway CD; AliveCor Inc., Mountain View, CA. (M.S., C.D.G., J.B.S., D.E.A.).
  • Shreibati JB; AliveCor Inc., Mountain View, CA. (M.S., C.D.G., J.B.S., D.E.A.).
  • Johnson PW; Department of Health Sciences Research (Biomedical Statistics and Informatics), Mayo Clinic, Jacksonville, FL (P.W.J., R.E.C.).
  • Carter RE; Department of Health Sciences Research (Biomedical Statistics and Informatics), Mayo Clinic, Jacksonville, FL (P.W.J., R.E.C.).
  • Disrud LW; Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic (L.W.D., Z.I.A., P.A.N., P.A.F., M.J.A.), Mayo Clinic, Rochester, MN.
  • Kleiman R; eResearch Technology Inc, Philadelphia, PA (R.K.).
  • Attia ZI; Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic (L.W.D., Z.I.A., P.A.N., P.A.F., M.J.A.), Mayo Clinic, Rochester, MN.
  • Noseworthy PA; Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic (L.W.D., Z.I.A., P.A.N., P.A.F., M.J.A.), Mayo Clinic, Rochester, MN.
  • Friedman PA; Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic (L.W.D., Z.I.A., P.A.N., P.A.F., M.J.A.), Mayo Clinic, Rochester, MN.
  • Albert DE; AliveCor Inc., Mountain View, CA. (M.S., C.D.G., J.B.S., D.E.A.).
  • Ackerman MJ; Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic (L.W.D., Z.I.A., P.A.N., P.A.F., M.J.A.), Mayo Clinic, Rochester, MN.
Circulation ; 143(13): 1274-1286, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: covidwho-1180993
ABSTRACT

BACKGROUND:

Heart rate-corrected QT interval (QTc) prolongation, whether secondary to drugs, genetics including congenital long QT syndrome, and/or systemic diseases including SARS-CoV-2-mediated coronavirus disease 2019 (COVID-19), can predispose to ventricular arrhythmias and sudden cardiac death. Currently, QTc assessment and monitoring relies largely on 12-lead electrocardiography. As such, we sought to train and validate an artificial intelligence (AI)-enabled 12-lead ECG algorithm to determine the QTc, and then prospectively test this algorithm on tracings acquired from a mobile ECG (mECG) device in a population enriched for repolarization abnormalities.

METHODS:

Using >1.6 million 12-lead ECGs from 538 200 patients, a deep neural network (DNN) was derived (patients for training, n = 250 767; patients for testing, n = 107 920) and validated (n = 179 513 patients) to predict the QTc using cardiologist-overread QTc values as the "gold standard". The ability of this DNN to detect clinically-relevant QTc prolongation (eg, QTc ≥500 ms) was then tested prospectively on 686 patients with genetic heart disease (50% with long QT syndrome) with QTc values obtained from both a 12-lead ECG and a prototype mECG device equivalent to the commercially-available AliveCor KardiaMobile 6L.

RESULTS:

In the validation sample, strong agreement was observed between human over-read and DNN-predicted QTc values (-1.76±23.14 ms). Similarly, within the prospective, genetic heart disease-enriched dataset, the difference between DNN-predicted QTc values derived from mECG tracings and those annotated from 12-lead ECGs by a QT expert (-0.45±24.73 ms) and a commercial core ECG laboratory [10.52±25.64 ms] was nominal. When applied to mECG tracings, the DNN's ability to detect a QTc value ≥500 ms yielded an area under the curve, sensitivity, and specificity of 0.97, 80.0%, and 94.4%, respectively.

CONCLUSIONS:

Using smartphone-enabled electrodes, an AI DNN can predict accurately the QTc of a standard 12-lead ECG. QTc estimation from an AI-enabled mECG device may provide a cost-effective means of screening for both acquired and congenital long QT syndrome in a variety of clinical settings where standard 12-lead electrocardiography is not accessible or cost-effective.
Asunto(s)
Palabras clave

Texto completo: Disponible Colección: Bases de datos internacionales Base de datos: MEDLINE Asunto principal: Inteligencia Artificial / Electrocardiografía / Cardiopatías / Frecuencia Cardíaca Tipo de estudio: Estudio de cohorte / Estudios diagnósticos / Estudio observacional / Estudio pronóstico Tópicos: Covid persistente Límite: Adulto / Anciano / Femenino / Humanos / Masculino / Middle aged Idioma: Inglés Revista: Circulation Año: 2021 Tipo del documento: Artículo País de afiliación: Circulationaha.120.050231

Similares

MEDLINE

...
LILACS

LIS


Texto completo: Disponible Colección: Bases de datos internacionales Base de datos: MEDLINE Asunto principal: Inteligencia Artificial / Electrocardiografía / Cardiopatías / Frecuencia Cardíaca Tipo de estudio: Estudio de cohorte / Estudios diagnósticos / Estudio observacional / Estudio pronóstico Tópicos: Covid persistente Límite: Adulto / Anciano / Femenino / Humanos / Masculino / Middle aged Idioma: Inglés Revista: Circulation Año: 2021 Tipo del documento: Artículo País de afiliación: Circulationaha.120.050231