Your browser doesn't support javascript.
Optimization of extreme learning machine model with biological heuristic algorithms to estimate daily reference crop evapotranspiration in different climatic regions of China
Journal of Hydrology ; 603:N.PAG-N.PAG, 2021.
Article Dans Anglais | Academic Search Complete | ID: covidwho-1568844
ABSTRACT
Hybrid ELM models (PSO-ELM, GA-ELM and ABC-ELM) were proposed for estimating ET 0 in different climate zones of China. • PSO-ELM model had the highest accuracy, followed by GA-ELM and ABC-ELM. • Hybrid ELM models outperformed standalone ELM and empirical models in different climate zones. • PSO-ELM model with T max , T min and RH obtained accurate ET 0 estimates in TCZ, SMZ and TMZ. • PSO-ELM model with only T max and T min was better performance on ET 0 estimates in MPZ. Accurate prediction of reference crop evapotranspiration (ET 0) is important for regional water resources management and optimal design of agricultural irrigation system. In this study, three hybrid models (PSO-ELM, GA-ELM and ABC-ELM) integrating the extreme learning machine model (ELM) with three biological heuristic algorithms, i.e., PSO, GA and ABC, were proposed for predicting daily ET 0 based on daily meteorological data from 2000 to 2019 at twelve representative stations in different climatic zones of China. The performances of the three hybrid ELM models were further compared with the standalone ELM model and three empirical models (Hargreaves, Priestley-Talor and Makkink models). The results showed that the hybrid ELM models (R 2 = 0.973–0.999) all performed better than the standalone ELM model (R 2 = 0.955–0.989) in four climatic regions in China. The estimation accuracy of the empirical models was relatively lower, with R2 of 0.822–0.887 and RMSE of 0.381–1.951 mm/d. The R 2 values of PSO-ELM, GA-ELM and ABC-ELM models were 0.993, 0.986 and 0.981 and the RMSE values were 0.266 mm/d, 0.306 mm/d and 0.404 mm/d, respectively, indicating that the PSO-ELM model had the best performance. When setting T max , T min and RH as the model inputs, the PSO-ELM model presented better performance in the temperate continental zone (TCZ), subtropical monsoon region (SMZ) and temperate monsoon zone (TMZ) climate zones, with R 2 of 0.892, 0866 and 0.870 and RMSE of 0.773 mm/d, 0.597 mm/d and 0.832 mm/d, respectively. The PSO-ELM model also performed in the mountain plateau region (MPZ) when only T max and T min data were available, with R2 of 0.808 and RMSE of 0.651 mm/d. All the three biological heuristic algorithms effectively improved the performance of the ELM model. Particularly, the PSO-ELM was recommended as a promising model realizing the high-precision estimation of daily ET 0 with fewer meteorological parameters in different climatic zones of China. [ FROM AUTHOR] Copyright of Journal of Hydrology is the property of Elsevier B.V. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)
Mots clés

Texte intégral: Disponible Collection: Bases de données des oragnisations internationales Base de données: Academic Search Complete langue: Anglais Revue: Journal of Hydrology Année: 2021 Type de document: Article

Documents relatifs à ce sujet

MEDLINE

...
LILACS

LIS


Texte intégral: Disponible Collection: Bases de données des oragnisations internationales Base de données: Academic Search Complete langue: Anglais Revue: Journal of Hydrology Année: 2021 Type de document: Article