Your browser doesn't support javascript.

Biblioteca Virtual en Salud

Hipertensión

Home > Búsqueda > ()
XML
Imprimir Exportar

Formato de exportación:

Exportar

Email
Adicionar mas contactos
| |

Biomineralization of a calcifying ureolytic bacterium Microbacterium sp. GM-1

Xu, Guojing; Li, Dongwei; Jiao, Binquan; Li, Dou; Yin, Yajie; Lun, Limei; Zhao, Ziqiang; Li, Shan.
Electron. j. biotechnol ; 25: 21-27, ene. 2017. ilus, graf, tab
Artículo en Inglés | LILACS | ID: biblio-1008381

Background:

Biomineralization is a significant process performed by living organisms in which minerals are produced through the hardening of biological tissues. Herein, we focus on calcium carbonate precipitation, as part of biomineralization, to be used in applications for environmental protection, material technology, and other fields. A strain GM-1, Microbacterium sp. GM-1, isolated from active sludge, was investigated for its ability to produce urease and induce calcium carbonate precipitation in a metabolic process.

Results:

It was discovered that Microbacterium sp. GM-1 resisted high concentrations of urea up to 60 g/L. In order to optimize the calcification process of Microbacterium sp. GM-1, the concentrations of Ni2+ and urea, pH value, and culture time were analyzed through orthogonal tests. The favored calcite precipitation culture conditions were as follows the concentration of Ni2+ and urea were 50 µM and 60 g/L, respectively, pH of 10, and culture time of 96 h. Using X-ray diffraction analysis, the calcium carbonate polymorphs produced by Microbacterium sp. GM-1 were proven to be mainly calcite.

Conclusions:

The results of this research provide evidence that Microbacterium sp. GM-1 can biologically induce calcification and suggest that strain GM-1 may play a potential role in the synthesis of new biominerals and in bioremediation or biorecovery.
Biblioteca responsable: CL1.1