Your browser doesn't support javascript.

Biblioteca Virtual en Salud

Hipertensión

Home > Búsqueda > ()
XML
Imprimir Exportar

Formato de exportación:

Exportar

Email
Adicionar mas contactos
| |

Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants

Yiska Weisblum; Fabian Schmidt; Fengwen Zhang; Justin DaSilva; Daniel Poston; Julio C C Lorenzi; Frauke Muecksch; Magdalena Rutkowska; Hans-Heinrich Hoffmann; Eleftherios Michailidis; Christian Gaebler; Marianna Agudelo; Alice Cho; Zijun Wang; Anna Gazumyan; Melissa Cipolla; Larry Luchsinger; Christopher D Hillyer; Marina Caskey; Davide F Robbiani; Charles Rice; Michel C Nussenzweig; Theodora Hatziioannou; Paul D Bieniasz.
Preprint en Inglés | PREPRINT-BIORXIV | ID: ppbiorxiv-214759
Neutralizing antibodies elicited by prior infection or vaccination are likely to be key for future protection of individuals and populations against SARS-CoV-2. Moreover, passively administered antibodies are among the most promising therapeutic and prophylactic anti-SARS-CoV-2 agents. However, the degree to which SARS-CoV-2 will adapt to evade neutralizing antibodies is unclear. Using a recombinant chimeric VSV/SARS-CoV-2 reporter virus, we show that functional SARS-CoV-2 S protein variants with mutations in the receptor binding domain (RBD) and N-terminal domain that confer resistance to monoclonal antibodies or convalescent plasma can be readily selected. Notably, SARS-CoV-2 S variants that resist commonly elicited neutralizing antibodies are now present at low frequencies in circulating SARS-CoV-2 populations. Finally, the emergence of antibody-resistant SARS-CoV-2 variants that might limit the therapeutic usefulness of monoclonal antibodies can be mitigated by the use of antibody combinations that target distinct neutralizing epitopes.