Your browser doesn't support javascript.

Biblioteca Virtual en Salud

Hipertensión

Home > Búsqueda > ()
XML
Imprimir Exportar

Formato de exportación:

Exportar

Email
Adicionar mas contactos
| |

Human airway cells prevent SARS-CoV-2 multibasic cleavage site cell culture adaptation

Mart Matthias Lamers; Anna Z Mykytyn; Tim Immanuel Breugem; Yiquan Wang; Douglas C Wu; Samra Riesebosch; Petra B van den Doel; Debby Schipper; Theo Bestebroer; Nicholas C Wu; Bart L Haagmans.
Preprint en Inglés | PREPRINT-BIORXIV | ID: ppbiorxiv-427802
Virus propagation methods generally use transformed cell lines to grow viruses from clinical specimens, which may force viruses to rapidly adapt to cell culture conditions, a process facilitated by high viral mutation rates. Upon propagation in VeroE6 cells, SARS-CoV-2 may mutate or delete the multibasic cleavage site (MBCS) in the spike protein that facilitates serine protease-mediated entry into human airway cells. We report that propagating SARS-CoV-2 on the human airway cell line Calu-3 - that expresses serine proteases - prevents MBCS mutations. Similar results were obtained using a human airway organoid-based culture system for SARS-CoV-2 propagation. Thus, in-depth knowledge on the biology of a virus can be used to establish methods to prevent cell culture adaptation.