Your browser doesn't support javascript.

Biblioteca Virtual en Salud

Hipertensión

Home > Búsqueda > ()
XML
Imprimir Exportar

Formato de exportación:

Exportar

Email
Adicionar mas contactos
| |

Recombination and low-diversity confound homoplasy-based methods to detect the effect of SARS-CoV-2 mutations on viral transmissibility

Elena E. Giorgi; Tanmoy Bhattacharya; Will M. Fischer; Hyejin Yoon; Werner Abfalterer; Bette Korber.
Preprint en Inglés | PREPRINT-BIORXIV | ID: ppbiorxiv-428535
The SARS-CoV-2 variant carrying the Spike protein mutation G614 was first detected in late January 2020 and within a few months became the dominant form globally. In the months that followed, many studies, both in vitro and in animal models, showed that variants carrying this mutation were more infectious and more readily transmitted than the ancestral Wuhan form. Here we investigate why a recently published study by van Dorp et al. failed to detect such higher transmissibility of the G614 variant using homoplasy-based methods. We show that both low diversity and recombination confound the methods utilized by van Dorp et al. and significantly decrease their sensitivity. Furthermore, though they claim no evidence of recombination in their dataset, we and several other studies identify a subset of the sequences as recombinants, possibly enough to affect their statistic adversely.