Your browser doesn't support javascript.

Biblioteca Virtual en Salud

Hipertensión

Home > Búsqueda > ()
XML
Imprimir Exportar

Formato de exportación:

Exportar

Email
Adicionar mas contactos
| |

Antibodies to the SARS-CoV-2 receptor-binding domain that maximize breadth and resistance to viral escape

Tyler N Starr; Nadine Czudnochowski; Fabrizia Zatta; Young-Jun Park; Zhuoming Liu; Amin Addetia; Dora Pinto; Martina Beltramello; Patrick Hernandez; Allison J Greaney; Roberta Marzi; William G Glass; Ivy Zhang; Adam S Dingens; John E Bowen; Jason A Wojcechowskyj; Anna De Marco; Laura E Rosen; Jiayi Zhou; Martin Montiel-Ruiz; Hannah Kaiser; Heather Tucker; Michael P. Housley; Julia Di Iulio; Gloria Lombardo; Maria Agostini; Nicole Sprugasci; Katja Culap; Stefano Jaconi; Marcel Meury; Exequiel Dellota; Elisabetta Cameroni; Tristan I Croll; Jay C Nix; Colin Havenar-Daughton; Amalio Telenti; Florian A Lempp; Matteo Samuele Pizzuto; John D Chodera; Christy M Hebner; Sean PJ Whelan; Herbert W Virgin; David Veesler; Davide Corti; Jesse D Bloom; Gyorgy Snell.
Preprint en Inglés | PREPRINT-BIORXIV | ID: ppbiorxiv-438709
An ideal anti-SARS-CoV-2 antibody would resist viral escape1-3, have activity against diverse SARS-related coronaviruses4-7, and be highly protective through viral neutralization8-11 and effector functions12,13. Understanding how these properties relate to each other and vary across epitopes would aid development of antibody therapeutics and guide vaccine design. Here, we comprehensively characterize escape, breadth, and potency across a panel of SARS-CoV-2 antibodies targeting the receptor-binding domain (RBD), including S3094, the parental antibody of the late-stage clinical antibody VIR-7831. We observe a tradeoff between SARS-CoV-2 in vitro neutralization potency and breadth of binding across SARS-related coronaviruses. Nevertheless, we identify several neutralizing antibodies with exceptional breadth and resistance to escape, including a new antibody (S2H97) that binds with high affinity to all SARS-related coronavirus clades via a unique RBD epitope centered on residue E516. S2H97 and other escape-resistant antibodies have high binding affinity and target functionally constrained RBD residues. We find that antibodies targeting the ACE2 receptor binding motif (RBM) typically have poor breadth and are readily escaped by mutations despite high neutralization potency, but we identify one potent RBM antibody (S2E12) with breadth across sarbecoviruses closely related to SARS-CoV-2 and with a high barrier to viral escape. These data highlight functional diversity among antibodies targeting the RBD and identify epitopes and features to prioritize for antibody and vaccine development against the current and potential future pandemics.