Your browser doesn't support javascript.

Biblioteca Virtual en Salud

Hipertensión

Home > Búsqueda > ()
XML
Imprimir Exportar

Formato de exportación:

Exportar

Email
Adicionar mas contactos
| |

Bradycardia induced by Mesobuthus tamulus scorpion venom involves muscarinic receptor-G-protein-coupled cell signaling pathways.

Deshpande, Shripad B; Kanoo, Sadhana; Alex, Anitha B.
Indian J Exp Biol ; 2008 Apr; 46(4): 229-33
Artículo en Inglés | IMSEAR | ID: sea-56424
Indian red scorpion (Mesobuthus tamulus; MBT) envenomation produces various cardio-respiratory abnormalities including cardiac dysrhythmias. The underlying cell signaling pathways for the cardiac dysrhythmias produced by MBT venom are not known. The present study was therefore conducted to delineate the second messenger signaling pathways involved in MBT venom-induced atrial rhythm changes. The effects of venom and various antagonists were examined on spontaneously beating rat right atrial preparations in vitro. The MBT-venom produced an increase (35%), a decrease (45%) and again an increase (50%) in rate at 0.03, 0.3 and 3.0 microg/ml of venom, respectively. On the other hand, force of contraction exhibited a concentration-dependent rise (up to 40%) at all concentrations of venom. Pretreatment with atropine (0.3 microM) blocked the decrease in atrial rate at 0.3 microg/ml concentration of venom while no such blockade was seen in force of contraction. Submaximal concentration of ACh (0.1 nM) decreased the atrial rate by 25%. In the presence of MBT venom (0.3 microg/ml), ACh-induced fall in atrial rate was enhanced. The venom-induced fall in atrial rate and augmentation of ACh response were blocked by pertussis toxin (PTx; a Gi-inhibitor) or methylene blue (a G-cyclase inhibitor). The results indicate that the decrease in atrial rate produced by venom is mediated muscarinic by receptors via Gi-guanylyl cyclase mediated cell signaling pathways.