Your browser doesn't support javascript.

Biblioteca Virtual en Salud

Hipertensión

Home > Búsqueda > ()
XML
Imprimir Exportar

Formato de exportación:

Exportar

Email
Adicionar mas contactos
| |

Comparison of the hybrid locking plate, standard dynamic compression plate, and standard dynamic compression plate augmented with bone cement for fixation of osteoporotic humeral shaft fractures: A cadaveric biomechanical study

Tabu Irewin A; Arbatin Jose Joefrey F; Bundoc Rafael C.
Acta Medica Philippina ; : 24-31, 2012.
Artículo en Inglés | WPRIM | ID: wpr-633794

BACKGROUND:

Studies comparing the relative strength of polymethylmethacrylate (PMMA) augmented fixation, standard plating and locked compression plate (LCP) system are few. The use of either the bone cement-augmented dynamic compression plate or the Hybrid LCP constructs may provide an additional tool for the treatment of fractures in patients with osteoporosis.

METHODS:

 Eighteen (18) osteoporotic cadaveric humeral bones were assigned randomly to each of three groups (Dynamic Compression Plate [DCP], DCP augmented with bone cement, and the Hybrid LCP system) and tested in anterior-posterior bending and torsion/external rotation. The load to failure values were obtained and the results for each specimen compared.

RESULTS:

 Significant differences were observed between the standard DCP and Hybrid LCP group (p-value=0.012), and in the cement-augmented and Hybrid LCP group (p-value=0.099) in torsion/external rotation loading. No significant difference was observed between the standard DCP and bone-cement augmented group (p-value=0.248). No significant difference was observed among the three groups in terms of stiffness (p-value=0.3868) in the four-point anterior-posterior bending modality. Screw pull-out of the implant was observed only in the regular DCP group in torsion/external rotation loading stress.

CONCLUSION:

 Significant differences were seen between the three constructs in torsion/external rotation but not in anterior-posterior four-point bending. Bone failure, but not screw pull-out, was seen in the Hybrid LCP and bone cement-augmented DCP groups in torsion. This study showed that the LCP system and the bone cement-augmented constructs may provide greater screw purchase to the osteoporotic humerus.
Biblioteca responsable: WPRO