Your browser doesn't support javascript.

Biblioteca Virtual en Salud

Hipertensión

Home > Búsqueda > ()
XML
Imprimir Exportar

Formato de exportación:

Exportar

Email
Adicionar mas contactos
| |

Improved cell adhesion to ion beam-irradiated biodegradable membranes / 대한치주과학회지

Yong-Moo LEE; Yoon-Jeong PARK; Seung-Jin LEE; Young KU; In-Chul RHYU; Soo-Boo HAN; Sang-Mook CHOI; Chong-Pyoung CHUNG.
Artículo en Ko | WPRIM | ID: wpr-92050
Ion irradiation is a very promising tool to modify the chemical structure and physical properities of polymers. This study was aimed to evaluate the cellular adhesion to ion beam-irradiated surface of biodegradable poly-llactide(PLLA) membrane. The PLLA membrane samples were irradiated by using 35 KeV Ar+ to fluence of 5x10(13), 5x10(14) and 5x10(15)ion/cm2. Water contact angles to control and each dose of ion beam-irradiated PLLA membranes were measured. Cultured fetal rat calvarial osteoblasts were seeded onto control and each dose of ion beam-irradiated PLLA membranes and cultured. After 24 hours, each PLLA membranes onto which osteoblasts attached were examined by scanning electron microscopy(SEM). Osteoblasts were removed from each PLLA membrane and then, the vitality and the number of cells were calibrated. Alkaline phosphatase of detached cells from each PLLA membranes were measured. Ion beam-irradiated PLLA membranes showed no significantly morphological change from control PLLA membranes. In the measurement of water contact angle to each membrane, the dose range of ion beam employed in this study reduced significantly contact angles. Among them, 5x10(14) ion/cm2 showed the least contact angle. The vitalities of osteoblastes detached from each membranes were confirmed by flow cytometer and well attached cells with their own morphology onto each membranes were observed by SEM. A very strong improvement of the cell adhesion and proliferation was observed for ion beam-irradiated surfaces of PLLA membranes. 5x10(14)ions/cm2 exhibited the most strong effect also in cellular adherence. ALPase activities also tended to increase in ion beam-irradiated membranes but statistical differences were not found. These results suggested that ion beam irradiation is an effective tool to improve the adhesion and spreading behaviour of the cells onto the biodegradable PLLA membranes for the promotion of membrane-tissue integration.

Asunto(s)

Ratas Animales
Biblioteca responsable: WPRO