Your browser doesn't support javascript.

Biblioteca Virtual en Salud

Hipertensión

Home > Búsqueda > ()
XML
Imprimir Exportar

Formato de exportación:

Exportar

Email
Adicionar mas contactos
| |

Iodine nutritional status and intelligence level of children in Nangqian County, Qinghai Province after 9 years of iodine supplemention / 中华地方病学杂志

Peizhen YANG; Yi WANG; Peichun GAN; Yanan LI; Guanglan PU; Hongting SHEN; Mingjun WANG; Xianya MENG; Xuefei ZHANG; Jing MA; Xun CHEN; Jinmei ZHANG.
Chinese Journal of Endemiology ; (12): 310-313, 2023.
Artículo en Zh | WPRIM | ID: wpr-991626

Objective:

To follow up the iodine nutrition and intellectual development of school children aged 8-10 years old in Nangqian County of Qinghai Province after 9 years of the implementation of iodine deficiency disorders intervention measures with iodine supplement as the main measure.

Methods:

In order to improve the iodine nutritional status of the population in Nangqian County, free iodized salt distribution, health education and other intervention measures for iodine deficiency disorders were implemented for 9 consecutive years since 2013. In May 2012 (before iodine supplementation) and September 2021 (after iodine supplementation), the same 5 townships (towns) were selected, and children aged 8-10 years old (half male and half female, age balanced) born locally in the central primary school of each township (town) were selected as the survey subjects. Household edible salt samples and random urine samples were collected for salt iodine and urinary iodine detection; the second revised version of the Chinese Combined Raven's Test (rural version) was used to assess the intelligence quotient (IQ) of children. The Flynn effect (FE) gain was used to adjust IQ, the corrected IQ = (IQ starting point value - current year's IQ value) - FE gain (calculated by 0.74/year). The differences of salt iodine and urinary iodine related indexes, IQ value and corrected IQ were compared before and after iodine supplementation.

Results:

After iodine supplementation, the coverage rate of iodized salt reached 100.00% (300/300), and the consumption rate of qualified iodized salt reached95.00% (285/300), the median urinary iodine increased to 157.20 μg/L, and all indexes met the elimination standard of iodine deficiency disorders. The IQ value of children aged 8-10 years old after iodine supplementation was 99.00 ± 14.90, significantly higher than that before iodine supplementation (82.00 ± 13.20, F = 156.82, P < 0.001). The FE gain in 9 years was 6.66, and the actual IQ gain of children aged 8-10 years old after iodine supplementation was 10.34. There were statistically significant differences in IQ value before and after iodine supplementation in male and female children ( F = 78.84, 78.88, P < 0.001). After iodine supplementation, there was a statistically significant difference in IQ value between children in the 8-year-old group and the 10-year-old group ( P = 0.010). There were statistically significant differences in IQ value before and after iodine supplementation in 8, 9 and 10 years old groups ( F = 55.23, 65.79, 36.85, P < 0.001).

Conclusion:

Intervention measures for iodine deficiency disorders, mainly iodine supplement, can significantly improve the iodine nutrition status of children aged 8-10 years old, and significantly promote the intellectual development of children.
Biblioteca responsable: WPRO