Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurol Neurosurg Psychiatry ; 86(10): 1060-5, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25476005

ABSTRACT

OBJECTIVE: Duchenne muscular dystrophy (DMD) is characterised by progressive muscle weakness. It has recently been reported that single nucleotide polymorphisms (SNPs) located in the SPP1 and LTBP4 loci can account for some of the inter-individual variability observed in the clinical disease course. The validation of genetic association in large independent cohorts is a key process for rare diseases in order to qualify prognostic biomarkers and stratify patients in clinical trials. METHODS: Duchenne patients from five European neuromuscular centres were included. Information about age at wheelchair dependence and steroid use was gathered. Melting curve analysis of PCR fragments or Sanger sequencing were used to genotype SNP rs28357094 in the SPP1 gene in 336 patients. The genotype of SNPs rs2303729, rs1131620, rs1051303 and rs10880 in the LTBP4 locus was determined in 265 patients by mass spectrometry. For both loci, a multivariate analysis was performed, using genotype/haplotype, steroid use and cohort as covariates. RESULTS: We show that corticosteroid treatment and the IAAM haplotype of the LTBP4 gene are significantly associated with prolonged ambulation in patients with DMD. There was no significant association between the SNP rs28357094 in the SPP1 gene and the age of ambulation loss. CONCLUSIONS: This study underlines the importance of replicating genetic association studies for rare diseases in large independent cohorts to identify the most robust associations. We anticipate that genotyping of validated genetic associations will become important for the design and interpretation of clinical trials.


Subject(s)
Latent TGF-beta Binding Proteins/genetics , Muscular Dystrophy, Duchenne/genetics , Osteopontin/genetics , Age Factors , Child , Cohort Studies , Disease Progression , Europe , Female , Genotype , Humans , Male , Polymorphism, Single Nucleotide , Prognosis , Reproducibility of Results , Steroids/therapeutic use , Walking , Wheelchairs
2.
Mol Ther Nucleic Acids ; 3: e156, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24691207

ABSTRACT

Duchenne muscular dystrophy (DMD) is caused by lack of functional dystrophin and results in progressive myofiber damage and degeneration. In addition, impaired muscle regeneration and fibrosis contribute to the progressive pathology of DMD. Importantly, transforming growth factor-ß (TGF-ß) is implicated in DMD pathology and is known to stimulate fibrosis and inhibit muscle regeneration. In this study, we present a new strategy to target TGF-ß signaling cascades by specifically inhibiting the expression of TGF-ß type I receptor TGFBR1 (ALK5). Antisense oligonucleotides (AONs) were designed to specifically induce exon skipping of mouse ALK5 transcripts. AON-induced exon skipping of ALK5 resulted in specific downregulation of full-length receptor transcripts in vitro in different cell types, repression of TGF-ß activity, and enhanced C2C12 myoblast differentiation. To determine the effect of these AONs in dystrophic muscles, we performed intramuscular injections of ALK5 AONs in mdx mice, which resulted in a decrease in expression of fibrosis-related genes and upregulation of Myog expression compared to control AON-injected muscles. In summary, our study presents a novel method to target TGF-ß signaling cascades with potential beneficial effects for DMD.

3.
Mol Ther Nucleic Acids ; 3: e142, 2014 Jan 21.
Article in English | MEDLINE | ID: mdl-24448195

ABSTRACT

Dupuytren's disease (DD) is a benign fibroproliferative disease of the hand. It is characterized by the excessive production of extracellular matrix (ECM) proteins, which form a strong fibrous tissue between the handpalm and fingers, permanently disrupting the fine movement ability. The major contractile element in DD is the myofibroblast (MFB). This cell has both fibroblast and smooth muscle cell-type characteristics and causes pathological collagen deposition. MFBs generate contractile forces that are transmitted to the surrounding collagen matrix. Μajor profibrotic factors are members of the transforming growth factor-ß (TGFß) pathway which directly regulate the expression levels of several fibrous proteins such as collagen type 1, type 3, and α-smooth muscle actin. Molecular modulation of this signaling pathway could serve as a therapeutic approach. We, therefore, have developed an ex vivo "clinical trial" system to study the properties of intact, patient-derived resection specimens. In these culture conditions, Dupuytren's tissue retains its three-dimensional (3D) structure and viability. As a novel antifibrotic therapeutic approach, we targeted TGFß type 1 receptor (also termed activin receptor-like kinase 5) expression in cultured Dupuytren's specimens by antisense oligonucleotide-mediated exon skipping. Antisense oligonucleotides targeting activin receptor-like kinase 5 showed specific reduction of ECM and potential for clinical application.Molecular Therapy-Nucleic Acids (2014) 3, e142; doi:10.1038/mtna.2013.69; published online 21 January 2014.

4.
Mol Ther Nucleic Acids ; 2: e66, 2013 Jan 22.
Article in English | MEDLINE | ID: mdl-23340324

ABSTRACT

The cytokine interleukin 1(IL-1) initiates a wide range of proinflammatory cascades and its inhibition has been shown to decrease inflammation in a variety of diseases. IL-1 receptor accessory protein (IL-1RAcP) is an indispensible part of the IL-1R complex that stabilizes IL-1/IL-1R interaction and plays an important role in the signal transduction of the receptor complex. The soluble form of IL-1RAcP (sIL-1RAcP) contains only the extracellular domain and serves as a natural inhibitor of IL-1 signaling. Therefore, increasing sIL-1RAcP levels might be an attractive therapeutic strategy to inhibit IL-1-driven inflammation. To achieve this we designed specific antisense oligonucleotides (AON), to redirect pre-mRNA IL-1RAcP splicing by skipping of the transmembrane domain encoding exon 9. This would give rise to a novel Δ9IL-1RAcP mRNA encoding a soluble, secreted form of IL-1RAcP, which might have similar activity as natural sIL-1RAcP. AON treatment resulted in exon 9 skipping both in vitro and in vivo. A single dose injection of 10 mg AON/kg body weight induced 90% skipping in mouse liver during at least 5 days. The truncated mRNA encoded for a secreted, soluble Δ9IL-1RAcP protein. IL-1RAcP skipping resulted in a substantial inhibition of IL-1 signaling in vitro. These results indicate that skipping of the transmembrane encoding exon 9 of IL-1RAcP using specific AONs might be a promising therapeutic strategy in a variety of chronic inflammatory diseases.Molecular Therapy - Nucleic Acids (2013) 2, e66; doi:10.1038/mtna.2012.58; published online 22 January 2013.

5.
Skelet Muscle ; 1(1): 15, 2011 Apr 04.
Article in English | MEDLINE | ID: mdl-21798095

ABSTRACT

Oculopharyngeal muscular dystrophy (OPMD) is a late-onset progressive muscle disorder caused by a poly-alanine expansion mutation in the Poly(A) Binding Protein Nuclear 1 (PABPN1). The molecular mechanisms that regulate disease onset and progression are largely unknown. In order to identify molecular pathways that are consistently associated with OPMD, we performed an integrated high-throughput transcriptome study in affected muscles of OPMD animal models and patients. The ubiquitin-proteasome system (UPS) was found to be the most consistently and significantly OPMD-deregulated pathway across species. We could correlate the association of the UPS OPMD-deregulated genes with stages of disease progression. The expression trend of a subset of these genes is age-associated and therefore, marks the late onset of the disease, and a second group with expression trends relating to disease-progression. We demonstrate a correlation between expression trends and entrapment into PABPN1 insoluble aggregates of OPMD-deregulated E3 ligases. We also show that manipulations of proteasome and immunoproteasome activity specifically affect the accumulation and aggregation of mutant PABPN1. We suggest that the natural decrease in proteasome expression and its activity during muscle aging contributes to the onset of the disease.

SELECTION OF CITATIONS
SEARCH DETAIL
...