Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38673163

ABSTRACT

The presence of alkaline earth cations, in particular, Ca2+ and Mg2+ ions in brine, causes undesired effects in solutions containing anionic surfactants because of precipitate formation. In the present study, an anionic surfactant, sodium dodecyl sulfate (SDS), was investigated, focusing on the determination of various properties (surface tension, critical micelle concentration, micelle size, turbidity) in the presence of alcohols and, in particular, the inhibition of the precipitation of SDS with calcium ions. The calcium ions were added to the surfactant in increasing concentrations (3.0-10.0 g/L), and short-carbon-chain alcohols (methanol, ethanol, n-propanol and n-butanol) were used to shift the onset of precipitate formation. The critical micelle concentration (CMC) of SDS in the presence of alcohols was also determined. It was established that among these alcohols, methanol and ethanol did not exert significant effects on the solubility of the Ca(DS)2 precipitate, while n-propanol and n-butanol were found to be much more efficient inhibitors. In addition, all the alcohols in the applied concentration range (up to 20 V/V%) were found to decrease the critical micelle concentration of SDS.

2.
Membranes (Basel) ; 13(2)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36837714

ABSTRACT

Membrane filtration is an effective technique for separating micro- and nano-sized oil droplets from harmful oil-contaminated waters produced by numerous industrial activities. However, significant flux reduction discourages the extensive application of this technology; therefore, developing antifouling membranes is necessary. For this purpose, various titanium dioxide/carbon nanotube (TiO2/CNT) nanocomposites (containing 1, 2, and 5 wt.% multi-walled CNTs) were used for the modification of polyvinylidene fluoride (PVDF) ultrafilter (250 kDa) membrane surfaces. The effects of surface modifications were compared in relation to the flux, the filtration resistance, the flux recovery ratio, and the purification efficiency. TiO2/CNT2% composite modification reduced both irreversible and total filtration resistances the most during the filtration of 100 ppm oil emulsions. The fluxes were approximately 4-7 times higher compared to the unmodified PVDF membrane, depending on the used transmembrane pressure (510, 900, and 1340 L/m2h fluxes were measured at 0.1, 0.2, and 0.3 MPa pressures, respectively). Moreover, the flux recovery ratio (up to 68%) and the purification efficiency (95.1-99.8%) were also significantly higher because of the surface modification, and the beneficial effects were more dominant at higher transmembrane pressures. TiO2/CNT2% nanocomposites are promising to be applied to modify membranes used for oil-water separation and achieve outstanding flux, cleanability, and purification efficiency.

3.
Chemosphere ; 307(Pt 1): 135589, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35803379

ABSTRACT

Enhancing the performance of polymeric membranes by nanomaterials has become of great interest in the field of membrane technology. The present work aimed to fabricate polyvinylidene fluoride (PVDF)-hybrid nanocomposite membranes and modify them with TiO2 and/or BiVO4 nanoparticles and/or carbon nanotubes (CNTs) in various ratios. Their photocatalytic performance under visible light was also investigated. All modified PVDF membranes exhibited higher hydrophilicity (lower contact angle of water droplets) than that of the neat membrane used as a reference. The membranes were characterized by using bovine serum albumin (BSA) as model dairy wastewater. The hybrid membranes had better antifouling properties as they had lower irreversible filtration resistance than that of the neat membrane. Hybrid PVDF membranes containing TiO2/CNT/BiVO4 showed the highest flux and lowest irreversible resistance during the filtration of the BSA solution. PVDF-TiO2/BiVO4 had the highest flux recovery ratio under visible light (70% for the PVDF mixed with 0.5% TiO2 and 0.5% BiVO4). The hydrophilicity of membrane surfaces increased with the incorporation of nanoparticles, preventing BSA to bind to the surface. This resulted in a slight decrease in BSA and chemical oxygen demand rejections, which were still above 97% in all cases.


Subject(s)
Nanocomposites , Nanotubes, Carbon , Water Purification , Fluorocarbon Polymers , Light , Membranes, Artificial , Polyvinyls , Serum Albumin, Bovine/chemistry , Titanium , Ultrafiltration , Wastewater , Water
4.
Environ Pollut ; 266(Pt 3): 115285, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32805681

ABSTRACT

Disastrous oil spills cause severe environmental issues. The shortcomings of current cleaning methods for remediating oil have prompted the latest research drive to create intelligent nanoparticles that absorb oil. We, therefore, synthesized 197 ± 50 nm floatable photoreactive hybrid nanoparticles with Ag-TiO2 plasmonic photocatalyst (Eg = 3.08 eV) content to eliminate interfacial water pollutants, especially toluene-based artificial oil spill. We found that the composite particles have non-wetting properties in the aqueous media and float easily on the surface of the water due to the moderate hydrophobic nature (Θ = 113°) of the matrix of polystyrene, and these properties lead to elevated absorption of the interfacial organic pollutants (e.g., mineral oil). We showed that (28.5 mol%) divinylbenzene cross-linker content was required for adequate swelling capacity (2.15 g/g), whereas incorporated 15.8% Ag-TiO2 content in the swollen particles was enough for efficient photodegradation of the artificial oil spill under 150 min LED light (λmax = 405 nm) irradiation. The swollen polymer particles with embedded 32 ± 7 nm Ag-TiO2 content increase the efficiency of photooxidation by increased the direct contact between both the photocatalysts and the artificial oil spill. Finally, it was also presented that the composite particles destroy themselves: after approximately one and a half months of continuous LED light irradiation, the organic polymer component of the composite was almost completely (88.5%) photodegraded by the incorporated inorganic photocatalyst particles.


Subject(s)
Nanoparticles , Water Pollutants , Catalysis , Photolysis , Titanium
SELECTION OF CITATIONS
SEARCH DETAIL
...