Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
PLoS Biol ; 21(7): e3002190, 2023 07.
Article in English | MEDLINE | ID: mdl-37459291

ABSTRACT

Our basic understanding of carbon cycling in the biosphere remains qualitative and incomplete, precluding our ability to effectively engineer novel solutions to climate change. How can we attempt to engineer the unknown? This challenge has been faced before in plant biology, providing a roadmap to guide future efforts. We use examples from over a century of photosynthesis research to illustrate the key principles that will set future plant engineering on a solid footing, namely, an effort to identify the key control variables, quantify the effects of systematically tuning these variables, and use theory to account for these observations. The main contributions of plant synthetic biology will stem not from delivering desired genotypes but from enabling the kind of predictive understanding necessary to rationally design these genotypes in the first place. Only then will synthetic plant biology be able to live up to its promise.


Subject(s)
Climate Change , Soil , Plants/genetics , Synthetic Biology , Photosynthesis/genetics
2.
bioRxiv ; 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37066395

ABSTRACT

Robustness is the invariant development of phenotype despite environmental changes and genetic perturbations. In the Arabidopsis flower bud, four sepals initiate at robust positions and times and grow to equal size to enclose and protect the inner floral organs. We previously characterized the mutant development related myb-like1 (drmy1), where 3-5 sepals initiate at irregular positions and variable times and grow to different sizes, compromising their protective function. The molecular mechanism underlying this loss of robustness was unclear. Here, we show that drmy1 has reduced TARGET OF RAPAMYCIN (TOR) activity, ribosomal content, and translation. Translation reduction decreases the protein level of ARABIDOPSIS RESPONSE REGULATOR7 (ARR7), a rapidly synthesized and degraded cytokinin signaling inhibitor. The resultant upregulation of cytokinin signaling disrupts the robust positioning of auxin signaling, causing variable sepal initiation. Our work shows that the homeostasis of translation, a ubiquitous cellular process, is crucial for the robust spatiotemporal patterning of organogenesis.

3.
Cell Syst ; 14(3): 220-236.e3, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36696901

ABSTRACT

How enhancers interpret morphogen gradients to generate gene expression patterns is a central question in developmental biology. Recent studies have proposed that enhancers can dictate whether, when, and at what rate promoters engage in transcription, but the complexity of endogenous enhancers calls for theoretical models with too many free parameters to quantitatively dissect these regulatory strategies. To overcome this limitation, we established a minimal promoter-proximal synthetic enhancer in embryos of Drosophila melanogaster. Here, a gradient of the Dorsal activator is read by a single Dorsal DNA binding site. Using live imaging to quantify transcriptional activity, we found that a single binding site can regulate whether promoters engage in transcription in a concentration-dependent manner. By modulating the binding-site affinity, we determined that a gene's decision to transcribe and its transcriptional onset time can be explained by a simple model where the promoter traverses multiple kinetic barriers before transcription can ensue.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Animals , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Enhancer Elements, Genetic/genetics , Gene Expression Regulation, Developmental/genetics , Probability
4.
Science ; 377(6607): 711-712, 2022 08 12.
Article in English | MEDLINE | ID: mdl-35951701

ABSTRACT

Complex spatial patterns of gene expression are engineered in plants to modulate root morphology.


Subject(s)
Gene Expression Regulation, Plant , Gene Regulatory Networks , Genes, Synthetic , Plant Roots , Plant Roots/genetics , Plant Roots/growth & development
5.
Nat Plants ; 8(5): 455-456, 2022 05.
Article in English | MEDLINE | ID: mdl-35501453

Subject(s)
Circadian Clocks , Noise
6.
Front Plant Sci ; 13: 803441, 2022.
Article in English | MEDLINE | ID: mdl-35251080

ABSTRACT

As sessile organisms, plants must adapt to a changing environment, sensing variations in resource availability and modifying their development in response. Light is one of the most important resources for plants, and its perception by sensory photoreceptors (e.g., phytochromes) and subsequent transduction into long-term transcriptional reprogramming have been well characterized. Chromatin changes have been shown to be involved in photomorphogenesis. However, the initial short-term transcriptional changes produced by light and what factors enable these rapid changes are not well studied. Here, we define rapidly light-responsive, Phytochrome Interacting Factor (PIF) direct-target genes (LRP-DTGs). We found that a majority of these genes also show rapid changes in Histone 3 Lysine-9 acetylation (H3K9ac) in response to the light signal. Detailed time-course analysis of transcript and chromatin changes showed that, for light-repressed genes, H3K9 deacetylation parallels light-triggered transcriptional repression, while for light-induced genes, H3K9 acetylation appeared to somewhat precede light-activated transcript accumulation. However, direct, real-time imaging of transcript elongation in the nucleus revealed that, in fact, transcriptional induction actually parallels H3K9 acetylation. Collectively, the data raise the possibility that light-induced transcriptional and chromatin-remodeling processes are mechanistically intertwined. Histone modifying proteins involved in long term light responses do not seem to have a role in this fast response, indicating that different factors might act at different stages of the light response. This work not only advances our understanding of plant responses to light, but also unveils a system in which rapid chromatin changes in reaction to an external signal can be studied under natural conditions.

7.
Nat Plants ; 7(8): 1037-1049, 2021 08.
Article in English | MEDLINE | ID: mdl-34373604

ABSTRACT

The responses of plants to their environment are often dependent on the spatiotemporal dynamics of transcriptional regulation. While live-imaging tools have been used extensively to quantitatively capture rapid transcriptional dynamics in living animal cells, the lack of implementation of these technologies in plants has limited concomitant quantitative studies in this kingdom. Here, we applied the PP7 and MS2 RNA-labelling technologies for the quantitative imaging of RNA polymerase II activity dynamics in single cells of living plants as they respond to experimental treatments. Using this technology, we counted nascent RNA transcripts in real time in Nicotiana benthamiana (tobacco) and Arabidopsis thaliana. Examination of heat shock reporters revealed that plant tissues respond to external signals by modulating the proportion of cells that switch from an undetectable basal state to a high-transcription state, instead of modulating the rate of transcription across all cells in a graded fashion. This switch-like behaviour, combined with cell-to-cell variability in transcription rate, results in mRNA production variability spanning three orders of magnitude. We determined that cellular heterogeneity stems mainly from stochasticity intrinsic to individual alleles instead of variability in cellular composition. Together, our results demonstrate that it is now possible to quantitatively study the dynamics of transcriptional programs in single cells of living plants.


Subject(s)
Arabidopsis/genetics , Arabidopsis/metabolism , Heat-Shock Response/genetics , Nicotiana/genetics , Nicotiana/metabolism , Plant Cells/metabolism , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Transcription, Genetic , Gene Expression Regulation, Plant , Plants, Genetically Modified/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
8.
PLoS Comput Biol ; 17(5): e1008999, 2021 05.
Article in English | MEDLINE | ID: mdl-34003867

ABSTRACT

The eukaryotic transcription cycle consists of three main steps: initiation, elongation, and cleavage of the nascent RNA transcript. Although each of these steps can be regulated as well as coupled with each other, their in vivo dissection has remained challenging because available experimental readouts lack sufficient spatiotemporal resolution to separate the contributions from each of these steps. Here, we describe a novel application of Bayesian inference techniques to simultaneously infer the effective parameters of the transcription cycle in real time and at the single-cell level using a two-color MS2/PP7 reporter gene and the developing fruit fly embryo as a case study. Our method enables detailed investigations into cell-to-cell variability in transcription-cycle parameters as well as single-cell correlations between these parameters. These measurements, combined with theoretical modeling, suggest a substantial variability in the elongation rate of individual RNA polymerase molecules. We further illustrate the power of this technique by uncovering a novel mechanistic connection between RNA polymerase density and nascent RNA cleavage efficiency. Thus, our approach makes it possible to shed light on the regulatory mechanisms in play during each step of the transcription cycle in individual, living cells at high spatiotemporal resolution.


Subject(s)
RNA/genetics , Single-Cell Analysis/methods , Transcription, Genetic , Eukaryota/genetics , Hydrolysis , Transcription Factors/genetics
9.
New Phytol ; 222(1): 628-640, 2019 04.
Article in English | MEDLINE | ID: mdl-30521109

ABSTRACT

High-efficiency methods for DNA assembly have enabled the routine assembly of synthetic DNAs of increased size and complexity. However, these techniques require customization, elaborate vector sets or serial manipulations for the different stages of assembly. We have developed Loop assembly based on a recursive approach to DNA fabrication. The system makes use of two Type IIS restriction endonucleases and corresponding vector sets for efficient and parallel assembly of large DNA circuits. Standardized level 0 parts can be assembled into circuits containing 1, 4, 16 or more genes by looping between the two vector sets. The vectors also contain modular sites for hybrid assembly using sequence overlap methods. Loop assembly enables efficient and versatile DNA fabrication for plant transformation. We show the construction of plasmids up to 16 genes and 38 kb with high efficiency (> 80%). We have characterized Loop assembly on over 200 different DNA constructs and validated the fidelity of the method by high-throughput Illumina plasmid sequencing. Our method provides a simple generalized solution for DNA construction with standardized parts. The cloning system is provided under an OpenMTA license for unrestricted sharing and open access.


Subject(s)
DNA, Plant/genetics , Genetic Vectors/genetics , Automation , Marchantia/genetics , Plasmids/genetics , Promoter Regions, Genetic/genetics , Reproducibility of Results
10.
Cell ; 173(7): 1810-1822.e16, 2018 06 14.
Article in English | MEDLINE | ID: mdl-29754814

ABSTRACT

Embryonic cell fates are defined by transcription factors that are rapidly deployed, yet attempts to visualize these factors in vivo often fail because of slow fluorescent protein maturation. Here, we pioneer a protein tag, LlamaTag, which circumvents this maturation limit by binding mature fluorescent proteins, making it possible to visualize transcription factor concentration dynamics in live embryos. Implementing this approach in the fruit fly Drosophila melanogaster, we discovered stochastic bursts in the concentration of transcription factors that are correlated with bursts in transcription. We further used LlamaTags to show that the concentration of protein in a given nucleus heavily depends on transcription of that gene in neighboring nuclei; we speculate that this inter-nuclear signaling is an important mechanism for coordinating gene expression to delineate straight and sharp boundaries of gene expression. Thus, LlamaTags now make it possible to visualize the flow of information along the central dogma in live embryos.


Subject(s)
Drosophila Proteins/genetics , Drosophila melanogaster/metabolism , Gene Editing/methods , Transcription Factors/genetics , Animals , Cell Nucleus/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/growth & development , Embryo, Nonmammalian/metabolism , Embryo, Nonmammalian/pathology , Gene Expression Regulation, Developmental , Green Fluorescent Proteins/genetics , Microscopy, Confocal , Transcription Factors/metabolism
11.
Biol Cell ; 110(4): 91-96, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29388708

ABSTRACT

BACKGROUND INFORMATION: Tissue morphogenesis results from the interplay between cell growth and mechanical forces. While the impact of geometrical confinement and mechanical forces on cell proliferation has been fairly well characterised, the inverse relationship is much less understood. Here, we investigated how traction forces vary during cell cycle progression. RESULTS: Cell shape was constrained on micropatterned substrates in order to distinguish variations in cell contractility from cell size increase. We performed traction force measurements of asynchronously dividing cells expressing a cell-cycle reporter, to obtain measurements of contractile forces generated during cell division. We found that forces tend to increase as cells progress through G1, before reaching a plateau in S phase, and then decline during G2. CONCLUSIONS: While cell size increases regularly during cell cycle progression, traction forces follow a biphasic behaviour based on specific and opposite regulation of cell contractility during early and late growth phases. SIGNIFICANCE: These results highlight the key role of cellular signalling in the regulation of cell contractility, independently of cell size and shape. Non-monotonous variations of cell contractility during cell cycle progression are likely to impact the mechanical regulation of tissue homoeostasis in a complex and non-linear manner.


Subject(s)
Cell Cycle , Luminescent Proteins/metabolism , Mechanotransduction, Cellular , Models, Biological , Retinal Pigment Epithelium/cytology , Cell Physiological Phenomena , Cells, Cultured , Computer Simulation , Humans , Retinal Pigment Epithelium/physiology
12.
Plant Physiol ; 171(2): 1523-32, 2016 06.
Article in English | MEDLINE | ID: mdl-27208309

ABSTRACT

Development of crops with improved nitrogen use efficiency (NUE) is essential for sustainable agriculture. However, achieving this goal has proven difficult since NUE is a complex trait encompassing physiological and developmental processes. We thought to tackle this problem by taking a systems biology approach to identify candidate target genes. First, we used a supervised machine-learning algorithm to predict a NUE gene network in Arabidopsis (Arabidopsis thaliana). Second, we identified BT2, a member of the Bric-a-Brac/Tramtrack/Broad gene family, as the most central and connected gene in the NUE network. Third, we experimentally tested BT2 for a role in NUE. We found NUE decreased in plants overexpressing BT2 gene compared to wild-type plants under limiting nitrate conditions. In addition, NUE increased compared to wild-type plants under low nitrate conditions in double mutant plants in bt2 and its closely related homolog bt1, indicating a functional redundancy of BT1 and BT2 for NUE. Expression of the nitrate transporter genes NRT2.1 and NRT2.4 increased in the bt1/bt2 double mutant compared to wild-type plants, with a concomitant 65% increase in nitrate uptake under low nitrate conditions. Similar to Arabidopsis, we found that mutation of the BT1/BT2 ortholog gene in rice (Oryza sativa) OsBT increased NUE by 20% compared to wild-type rice plants under low nitrogen conditions. These results indicate BT gene family members act as conserved negative regulators of nitrate uptake genes and NUE in plants and highlight them as prime targets for future strategies to improve NUE in crops.


Subject(s)
Arabidopsis/genetics , Arabidopsis/metabolism , Multigene Family , Nitrates/metabolism , Nitrogen/metabolism , Oryza/genetics , Oryza/metabolism , Plant Proteins/metabolism , Arabidopsis/growth & development , Biomass , Gene Expression Regulation, Plant/drug effects , Gene Regulatory Networks , Membrane Transport Proteins/metabolism , Nitrates/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...