Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Recent Pat Biotechnol ; 13(4): 316-328, 2019.
Article in English | MEDLINE | ID: mdl-31333134

ABSTRACT

BACKGROUND: The Human Cytomegalovirus (HCMV) has infected more than 90% of the world population and its prevalence can be related to the individuals geographical and socialeconomic status. Serological tests based on ELISA are pivotal for HCMV diagnosis. Due to the lack of standardization in the production/purification of antigens from viral preparations, ELISA tests are based on several recombinant proteins or peptides. As an alternative, multiepitope proteins may be employed. OBJECTIVE: In this work, we developed a recombinant multiepitope protein (rMEHCMV) for HCMV diagnosis based on conserved and immunodominant epitopes derived from tegument (pp150, pp65 and pp28), glycoprotein gB (pp38) and DNA polymerase subunit (pp52) of HCMV. METHODS: The rMEHCMV gene was synthesized de novo and overexpressed in Escherichia coli cells. The recombinant protein was purified to homogeneity using a Ni-NTA column. Biophysical analysis of recombinant protein was performed by circular dichroism. A preliminary biological activity test was performed using 12 positive human sera samples by using an in-house IgG ELISA. The following patents database were consulted: Espacenet, Google Patents and the National Institute of Intellectual Property (INPI, Brazil). RESULTS: The recombinant multiepitope protein was successfully expressed in E. coli. The structural data obtained by circular dichroism spectroscopy showed that rMEHCMV is structurally disordered. An in-house IgG ELISA test with rMEHCMV was successfully used to recognized IgG from human serum samples. CONCLUSION: Together, our results show that rMEHCMV should be considered as a potential antigenic target for HCMV diagnosis.


Subject(s)
Antibodies, Viral , Cytomegalovirus Infections/diagnosis , Cytomegalovirus/genetics , Recombinant Proteins , Viral Proteins , Antibodies, Viral/blood , Antibodies, Viral/immunology , Cytomegalovirus Infections/immunology , Enzyme-Linked Immunosorbent Assay/methods , Epitopes/genetics , Escherichia coli/genetics , Humans , Hydrogen-Ion Concentration , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/immunology
2.
Sci Rep ; 6: 38031, 2016 12 09.
Article in English | MEDLINE | ID: mdl-27934875

ABSTRACT

A current metagenomics focus is to interpret and transform collected genomic data into biological information. By combining structural, functional and genomic data we have assessed a novel bacterial protein selected from a carbohydrate-related activity screen in a microbial metagenomic library from Capra hircus (domestic goat) gut. This uncharacterized protein was predicted as a bacterial cell wall-modifying enzyme (CWME) and shown to contain four domains: an N-terminal, a cysteine protease, a peptidoglycan-binding and an SH3 bacterial domain. We successfully cloned, expressed and purified this putative cysteine protease (PCP), which presented autoproteolytic activity and inhibition by protease inhibitors. We observed cell wall hydrolytic activity and ampicillin binding capacity, a characteristic of most bacterial CWME. Fluorimetric binding analysis yielded a Kb of 1.8 × 105 M-1 for ampicillin. Small-angle X-ray scattering (SAXS) showed a maximum particle dimension of 95 Å with a real-space Rg of 28.35 Å. The elongated molecular envelope corroborates the dynamic light scattering (DLS) estimated size. Furthermore, homology modeling and SAXS allowed the construction of a model that explains the stability and secondary structural changes observed by circular dichroism (CD). In short, we report a novel cell wall-modifying autoproteolytic PCP with insight into its biochemical, biophysical and structural features.


Subject(s)
Ampicillin/metabolism , Bacteria/enzymology , Cloning, Molecular/methods , Cysteine Proteases/chemistry , Cysteine Proteases/metabolism , Goats/microbiology , Animals , Bacteria/chemistry , Bacteria/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Wall/enzymology , Cell Wall/genetics , Cysteine Proteases/genetics , Hydrolysis , Metagenome , Models, Molecular , Protein Binding , Protein Domains , Protein Stability , Protein Structure, Secondary , Scattering, Small Angle , X-Ray Diffraction
3.
Arch Biochem Biophys ; 580: 50-6, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-26116788

ABSTRACT

Optimization of cellulose enzymatic hydrolysis is crucial for cost effective bioethanol production from lignocellulosic biomass. Enzymes involved in cellulose hydrolysis are often inhibited by their end-products, cellobiose and glucose. Efforts have been made to produce more efficient enzyme variants that are highly tolerant to product accumulation; however, further improvements are still necessary. Based on an alternative approach we initially investigated whether recently formed glucose could be phosphorylated into glucose-6-phosphate to circumvent glucose accumulation and avoid inhibition of beta-glucosidase from Bacillus polymyxa (BGLA). The kinetic properties and structural analysis of BGLA in the presence of glucose-6-phosphate (G6P) were investigated. Kinetic studies demonstrated that enzyme was not inhibited by G6P. In contrast, the presence of G6P activated the enzyme, prevented beta glucosidase feedback inhibition by glucose accumulation and improved protein stability. G6P binding was investigated by fluorescence quenching experiments and the respective association constant indicated high affinity binding of G6P to BGLA. Data reported here are of great impact for future design strategies for second-generation bioethanol production.


Subject(s)
Bacillus/chemistry , Bacterial Proteins/chemistry , Glucose-6-Phosphate/chemistry , beta-Glucosidase/chemistry , Bacillus/enzymology , Bacterial Proteins/genetics , Enzyme Activation , Enzyme Stability , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Glucose/chemistry , Kinetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Thermodynamics , beta-Glucosidase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...