Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 541
Filter
1.
Environ Sci Technol ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39021055

ABSTRACT

Transition metal catalysts in soil constituents (e.g., clays) can significantly decrease the pyrolytic treatment temperature and energy requirements for efficient removal of polycyclic aromatic hydrocarbons (PAHs) and, thus, lead to more sustainable remediation of contaminated soils. However, the catalytic mechanism and its rate-limiting steps are not fully understood. Here, we show that PAHs with lower ionization potential (IP) are more easily removed by pyro-catalytic treatment when deposited onto Fe-enriched bentonite (1.8% wt. ion-exchanged content). We used four PAHs with decreasing IP: naphthalene > pyrene > benz(a)anthracene > benzo(g,h,i)perylene. Density functional theory (DFT) calculations showed that lower IP results in stronger PAH adsorption to Fe(III) sites and easier transfer of π-bond electrons from the aromatic ring to Fe(III) at the onset of pyrolysis. We postulate that the formation of aromatic radicals via this direct electron transfer (DET) mechanism is the initiation step of a cascade of aromatic polymerization reactions that eventually convert PAHs to a non-toxic and fertility-preserving char, as we demonstrated earlier. However, IP is inversely correlated with PAH hydrophobicity (log Kow), which may limit access to the Fe(III) catalytic sites (and thus DET) if it increases PAH sorption to soil OM. Thus, ensuring adequate contact between sorbed PAHs and the catalytic reaction centers represents an engineering challenge to achieve faster remediation with a lower carbon footprint via pyro-catalytic treatment.

2.
Environ Sci Technol ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38989600

ABSTRACT

Transition-metal dichalcogenides (TMDs) have shown great promise as selective and high-capacity sorbents for Hg(II) removal from water. Yet, their design should consider safe disposal of spent materials, particularly the subsequent formation of methylmercury (MeHg), a highly potent and bioaccumulative neurotoxin. Here, we show that microbial methylation of mercury bound to MoS2 nanosheets (a representative TMD material) is significant under anoxic conditions commonly encountered in landfills. Notably, the methylation potential is highly dependent on the phase compositions of MoS2. MeHg production was higher for 1T MoS2, as mercury bound to this phase primarily exists as surface complexes that are available for ligand exchange. In comparison, mercury on 2H MoS2 occurs largely in the form of precipitates, particularly monovalent mercury minerals (e.g., Hg2MoO4 and Hg2SO4) that are minimally bioavailable. Thus, even though 1T MoS2 is more effective in Hg(II) removal from aqueous solution due to its higher adsorption affinity and reductive ability, it poses a higher risk of MeHg formation after landfill disposal. These findings highlight the critical role of nanoscale surfaces in enriching heavy metals and subsequently regulating their bioavailability and risks and shed light on the safe design of heavy metal sorbent materials through surface structural modulation.

3.
Environ Sci Technol ; 58(26): 11833-11842, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38910294

ABSTRACT

Atomic hydrogen (H*) is a powerful and versatile reductant and has tremendous potential in the degradation of oxidized pollutants (e.g., chlorinated solvents). However, its application for groundwater remediation is hindered by the scavenging side reaction of H2 evolution. Herein, we report that a composite material (Fe0@Fe-N4-C), consisting of zerovalent iron (Fe0) nanoparticles and nitrogen-coordinated single-atom Fe (Fe-N4), can effectively steer H* toward reductive dechlorination of trichloroethylene (TCE), a common groundwater contaminant and primary risk driver at many hazardous waste sites. The Fe-N4 structure strengthens the bond between surface Fe atoms and H*, inhibiting H2 evolution. Nonetheless, H* is available for dechlorination, as the adsorption of TCE weakens this bond. Interestingly, H* also enhances electron delocalization and transfer between adsorbed TCE and surface Fe atoms, increasing the reactivity of adsorbed TCE with H*. Consequently, Fe0@Fe-N4-C exhibits high electron selectivity (up to 86%) toward dechlorination, as well as a high TCE degradation kinetic constant. This material is resilient against water matrix interferences, achieving long-lasting performance for effective TCE removal. These findings shed light on the utilization of H* for the in situ remediation of groundwater contaminated with chlorinated solvents, by rational design of earth-abundant metal-based single-atom catalysts.


Subject(s)
Groundwater , Iron , Solvents , Water Pollutants, Chemical , Groundwater/chemistry , Iron/chemistry , Solvents/chemistry , Water Pollutants, Chemical/chemistry , Hydrogen/chemistry , Trichloroethylene/chemistry , Halogenation , Environmental Restoration and Remediation/methods , Oxidation-Reduction , Adsorption
4.
J Hazard Mater ; 476: 134974, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38905973

ABSTRACT

Despite the growing prevalence of nanoplastics in drinking water distribution systems, the collective influence of nanoplastics and background nanoparticles on biofilm formation and microbial risks remains largely unexplored. Here, we demonstrate that nano-sized polystyrene modified with carboxyl groups (nPS) and background magnetite (nFe3O4) nanoparticles at environmentally relevant concentrations can collectively stimulate biofilm formation and prompt antibiotic resistance. Combined exposure of nPS and nFe3O4 by P. aeruginosa biofilm cells stimulated intracellular reactive oxidative species (ROS) production more significantly compared with individual exposure. The resultant upregulation of quorum sensing (QS) and c-di-GMP signaling pathways enhanced the biosynthesis of polysaccharides by 50 %- 66 % and increased biofilm biomass by 36 %- 40 % relative to unexposed control. Consistently, biofilm mechanical stability (measured as Young's modulus) increased by 7.2-9.1 folds, and chemical stress resistance (measured with chlorine disinfection) increased by 1.4-2.0 folds. For P. aeruginosa, the minimal inhibitory concentration of different antibiotics also increased by 1.1-2.5 folds after combined exposure. Moreover, at a microbial community-wide level, metagenomic analysis revealed that the combined exposure enhanced the multi-species biofilm's resistance to chlorine, enriched the opportunistic pathogenic bacteria, and promoted their virulence and antibiotic resistance. Overall, the enhanced formation of biofilms (that may harbor opportunistic pathogens) by nanoplastics and background nanoparticles is an overlooked phenomenon, which may jeopardize the microbial safety of drinking water distribution systems.

5.
Environ Sci Technol ; 58(22): 9887-9895, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38775679

ABSTRACT

Mercury is a ubiquitous heavy-metal pollutant and poses serious ecological and human-health risks. There is an ever-growing demand for rapid, sensitive, and selective detection of mercury in natural waters, particularly for regions lacking infrastructure specialized for mercury analysis. Here, we show that a sensor based on multi-emission carbon dots (M-CDs) exhibits ultrahigh sensing selectivity toward Hg(II) in complex environmental matrices, tested in the presence of a range of environmentally relevant metal/metalloid ions as well as natural and artificial ligands, using various real water samples. By incorporating structural features of calcein and folic acid that enable tunable emissions, the M-CDs couple an emission enhancement at 432 nm and a simultaneous reduction at 521 nm, with the intensity ratio linearly related to the Hg(II) concentration up to 1200 µg/L, independent of matrix compositions. The M-CDs have a detection limit of 5.6 µg/L, a response time of 1 min, and a spike recovery of 94 ± 3.7%. The intensified emission is attributed to proton transfer and aggregation-induced emission enhancement, whereas the quenching is due to proton and electron transfer. These findings also have important implications for mercury identification in other complex matrices for routine, screening-level food safety and health management practices.


Subject(s)
Carbon , Mercury , Water Pollutants, Chemical , Mercury/analysis , Carbon/chemistry , Water Pollutants, Chemical/analysis , Fluorescence , Quantum Dots/chemistry , Water/chemistry
7.
Environ Sci Technol ; 58(16): 7186-7195, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38598770

ABSTRACT

Remediation of large and dilute plumes of groundwater contaminated by oxidized pollutants such as chromate is a common and difficult challenge. Herein, we show that in situ formation of FeS nanoparticles (using dissolved Fe(II), S(-II), and natural organic matter as a nucleating template) results in uniform coating of aquifer material to create a regenerable reactive zone that mitigates Cr(VI) migration. Flow-through columns packed with quartz sand are amended first with an Fe2+ solution and then with a HS- solution to form a nano-FeS coating on the sand, which does not hinder permeability. This nano-FeS coating effectively reduces and immobilizes Cr(VI), forming Fe(III)-Cr(III) coprecipitates with negligible detachment from the sand grains. Preconditioning the sand with humic or fulvic acid (used as model natural organic matter (NOM)) further enhances Cr(VI) sequestration, as NOM provides additional binding sites of Fe2+ and mediates both nucleation and growth of FeS nanoparticles, as verified with spectroscopic and microscopic evidence. Reactivity can be easily replenished by repeating the procedures used to form the reactive coating. These findings demonstrate that such enhancement of attenuation capacity can be an effective option to mitigate Cr(VI) plume migration and exposure, particularly when tackling contaminant rebound post source remediation.


Subject(s)
Chromium , Groundwater , Oxidation-Reduction , Water Pollutants, Chemical , Groundwater/chemistry , Chromium/chemistry , Water Pollutants, Chemical/chemistry , Nanoparticles/chemistry , Environmental Restoration and Remediation/methods , Humic Substances , Ferrous Compounds/chemistry , Benzopyrans/chemistry
8.
Trends Microbiol ; 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38433027

ABSTRACT

Bacteriophages (phages) play a vital role in ecosystem functions by influencing the composition, genetic exchange, metabolism, and environmental adaptation of microbial communities. With recent advances in sequencing technologies and bioinformatics, our understanding of the ecology and evolution of phages in stressful environments has substantially expanded. Here, we review the impact of physicochemical environmental stress on the physiological state and community dynamics of phages, the adaptive strategies that phages employ to cope with environmental stress, and the ecological effects of phage-host interactions in stressful environments. Specifically, we highlight the contributions of phages to the adaptive evolution and functioning of microbiomes and suggest that phages and their hosts can maintain a mutualistic relationship in response to environmental stress. In addition, we discuss the ecological consequences caused by phages in stressful environments, encompassing biogeochemical cycling. Overall, this review advances an understanding of phage ecology in stressful environments, which could inform phage-based strategies to improve microbiome performance and ecosystem resilience and resistance in natural and engineering systems.

9.
PLoS One ; 19(3): e0300111, 2024.
Article in English | MEDLINE | ID: mdl-38470891

ABSTRACT

Better understanding how organisms respond to their abiotic environment, especially at the biochemical level, is critical in predicting population trajectories under climate change. In this study, we measured constitutive stress biomarkers and protein post-translational modifications associated with oxidative stress in Gallotia galloti, an insular lizard species inhabiting highly heterogeneous environments on Tenerife. Tenerife is a small volcanic island in a relatively isolated archipelago off the West coast of Africa. We found that expression of GRP94, a molecular chaperone protein, and levels of protein carbonylation, a marker of cellular stress, change across different environments, depending on solar radiation-related variables and topology. Here, we report in a wild animal population, cross-talk between the baseline levels of the heat shock protein-like GRP94 and oxidative damage (protein carbonylation), which are influenced by a range of available temperatures, quantified through modelled operative temperature. This suggests a dynamic trade-off between cellular homeostasis and oxidative damage in lizards adapted to this thermally and topologically heterogeneous environment.


Subject(s)
Heat-Shock Proteins , Lizards , Animals , Oxidative Stress , Protein Processing, Post-Translational , Protein Carbonylation
11.
J Environ Manage ; 354: 120316, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38382429

ABSTRACT

Traditional management practices, such as grazing, can have adverse impact on soils. Despite an extensive body of literature exploring the effects of grazing on soil and plants worldwide, there is a notable lack of research on its impacts in Mediterranean forests within the Iberian Peninsula Furthermore, there is a knowledge gap on the enzymatic activities and basal respiration of soil in forest after grazing. To address these gaps, this study aimed to investigate the impact of grazing on various important physicochemical and biological soil properties along with vegetation richness in a Mediterranean forest located in Castilla-La Mancha (Central Eastern Spain). Relative to undisturbed sites, grazing significantly reduced soil water content (-53%) and available water (-59%). However, soil hydraulic conductivity remained unaffected by animal trampling and the soil water repellency observed in ungrazed sites disappeared. Grazed soils experienced a slight increase in pH (+18%). Among the biochemical properties studied, only dehydrogenase showed a significant increase (+100%) while basal respiration exhibited a notable decrease (-24%). Grazing resulted in a reduction of plant species richness (-34%) indicating a loss of biodiversity in grazed areas. The observed significant alterations in key soil and plant properties due to livestock activity suggest that grazing has the potential to modify the overall soil quality of these sites. Certain variables that exhibited noteworthy differences between grazed and ungrazed sites could serve as indicators of grazing impacts in Mediterranean forests. These indicators may be considered proxies for establishing effective land management strategies to mitigate degradation in the Mediterranean forest ecosystem.


Subject(s)
Ecosystem , Soil , Animals , Soil/chemistry , Spain , Forests , Plants , Water
12.
J Hazard Mater ; 467: 133753, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38350321

ABSTRACT

Peroxydisulfate (PDS)-based Fenton-like reactions are promising advanced oxidation processes (AOPs) to degrade recalcitrant organic water pollutants. Current research predominantly focuses on augmenting the generation of reactive species (e.g., surface-activated PDS complexes (PDS*) to improve treatment efficiency, but overlooks the potential benefits of enhancing the reactivity of these species. Here, we enhanced PDS* generation and reactivity by incorporating Zn into CuO catalyst lattice, which resulted in 99% degradation of 4-chlorophenol within only 10 min. Zn increased PDS* generation by nearly doubling PDS adsorption while maintaining similar PDS to PDS* conversion efficiency, and induced higher PDS* reactivity than the common catalyst CuO, as indicated by a 4.1-fold larger slope between adsorbed PDS and open circuit potential of a catalytic electrode. Cu-O-Zn formation upshifts the d-band center of Cu sites and lowers the energy barrier for PDS adsorption and sulfate desorption, resulting in enhanced PDS* generation and reactivity. Overall, this study informs strategies to enhance PDS* reactivity and design highly active catalysts for efficient AOPs.

13.
Environ Sci Technol ; 58(1): 3-16, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38193155

ABSTRACT

Water reuse is rapidly becoming an integral feature of resilient water systems, where municipal wastewater undergoes advanced treatment, typically involving a sequence of ultrafiltration (UF), reverse osmosis (RO), and an advanced oxidation process (AOP). When RO is used, a concentrated waste stream is produced that is elevated in not only total dissolved solids but also metals, nutrients, and micropollutants that have passed through conventional wastewater treatment. Management of this RO concentrate─dubbed municipal wastewater reuse concentrate (MWRC)─will be critical to address, especially as water reuse practices become more widespread. Building on existing brine management practices, this review explores MWRC management options by identifying infrastructural needs and opportunities for multi-beneficial disposal. To safeguard environmental systems from the potential hazards of MWRC, disposal, monitoring, and regulatory techniques are discussed to promote the safety and affordability of implementing MWRC management. Furthermore, opportunities for resource recovery and valorization are differentiated, while economic techniques to revamp cost-benefit analysis for MWRC management are examined. The goal of this critical review is to create a common foundation for researchers, practitioners, and regulators by providing an interdisciplinary set of tools and frameworks to address the impending challenges and emerging opportunities of MWRC management.


Subject(s)
Ultrafiltration , Wastewater , Epichlorohydrin , Nutrients , Water
14.
Rev. cuba. med. mil ; 52(4)dic. 2023.
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1559850

ABSTRACT

Introducción: En Cuba, las enfermedades cerebrovasculares (ECV) son padecimientos crónicos no trasmisibles muy frecuentes. Objetivos: Caracterizar a pacientes de la unidad de cuidados intensivos, con diagnóstico anatomopatológico de ECV. Métodos: Estudio observacional, descriptivo y transversal en una muestra de 176 pacientes. Variables estudiadas: edad (19-39 años, 40-59 años, 60-100 años), sexo, tipo de ECV (hemorrágica, isquémica), escala APACHE II (≤ 15, > 15 puntos) y de coma Glasgow al ingreso (≤ 8, > 8 puntos), ventilación mecánica (sí, no), estadía (≤ 7, > 7 días) y causa directa de muerte. Se calcularon las frecuencias, medidas de tendencia central, pruebas de ji cuadrado y t de Student (nivel de significación el 5 %). Resultados: Predominaron la enfermedad cerebrovascular hemorrágica, el sexo masculino (52,8 %) y el grupo de edad de 60-100 años (64,8 %). La edad media fue de 63,8 años. La media del valor de las escalas APACHE II y Glasgow fue de 21,6 y 6,5 puntos. El 97,6 % recibió ventilación mecánica. La estadía media fue de 7,0 días. El edema cerebral intenso constituyó la principal causa de muerte directa (79,3 %). Conclusiones: Existe predominio de la ECV de tipo hemorrágica, en pacientes del sexo masculino, de 60-100 años, con APACHE II > 15 puntos, Glasgow ≤ 8 puntos, ventilados, estadía ≤ 7 días y edema cerebral intenso.


Introduction: In Cuba, cerebrovascular diseases (CVD) are very common non-communicable chronic conditions. Objectives: Characterize patients from intensive care unit with a pathological diagnosis of CVD. Methods: Observational, descriptive and transversal study in a sample of 176 patients. Variables: age (19-39 years, 40-59 years, 60-100 years), sex, type of CVD (hemorrhagic, ischemic), APACHE II scale (≤ 15, > 15 score) and Glasgow coma on admission (≤ 8, > 8 score), mechanical ventilation (yes, no), length of stay (≤ 7, > 7 days) and direct cause of death. Frequencies, measures of central tendency, chi-square and Student's t tests (significance level of 5%) were calculated. Results: Hemorrhagic cerebrovascular disease, male sex (52.8%) and the age group of 60-100 years (64.8%) predominated. The mean age was 63.8 years. The average value of the APACHE II and Glasgow scales was 21.6 and 6.5. 97.6% received mechanical ventilation. The mean stay was 7.0 days. Severe cerebral edema was the main cause of direct death (79.3%). Conclusions: There is a predominance of hemorrhagic CVD, in male patients, aged 60-100 years, APACHE II score > 15, Glasgow score ≤ 8, ventilated patients, stay ≤ 7 days and intense cerebral edema.

15.
Environ Sci Technol ; 57(45): 17324-17337, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37930060

ABSTRACT

Phages are increasingly recognized for their importance in microbial aggregates, including their influence on microbial ecosystem services and biotechnology applications. However, the adaptive strategies and ecological functions of phages in different aggregates remain largely unexplored. Herein, we used membrane bioreactors to investigate bacterium-phage interactions and related microbial functions within suspended and attached microbial aggregates (SMA vs AMA). SMA and AMA represent distinct microbial habitats where bacterial communities display distinct patterns in terms of dominant species, keystone species, and bacterial networks. However, bacteria and phages in both aggregates exhibited high lysogenicity, with 60% lysogenic phages in the virome and 70% lysogenic metagenome-assembled genomes of bacteria. Moreover, substantial phages exhibited broad host ranges (34% in SMA and 42% in AMA) and closely interacted with habitat generalist species (43% in SMA and 49% in AMA) as adaptive strategies in stressful operation environments. Following a mutualistic pattern, phage-carried auxiliary metabolic genes (pAMGs; 238 types in total) presumably contributed to the bacterial survival and aggregate stability. The SMA-pAMGs were mainly associated with energy metabolism, while the AMA-pAMGs were mainly associated with antioxidant biosynthesis and the synthesis of extracellular polymeric substances, representing habitat-dependent patterns. Overall, this study advanced our understanding of phage adaptive strategies in microbial aggregate habitats and emphasized the importance of bacterium-phage symbiosis in the stability of microbial aggregates.


Subject(s)
Bacteriophages , Microbiota , Bacteriophages/genetics , Symbiosis , Bacteria/genetics , Metagenome
17.
Environ Sci Technol ; 57(41): 15736-15746, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37802050

ABSTRACT

Biofilms give rise to a range of issues, spanning from harboring pathogens to accelerating microbial-induced corrosion in pressurized water systems. Introducing germicidal UV-C (200-280 nm) irradiation from light-emitting diodes (LEDs) into flexible side-emitting optical fibers (SEOFs) presents a novel light delivery method to inhibit the accumulation of biofilms on surfaces found in small-diameter tubing or other intricate geometries. This work used surfaces fully submerged in flowing water that contained Pseudomonas aeruginosa, an opportunistic pathogen commonly found in water system biofilms. A SEOF delivered a UV-C gradient to the surface for biofilm inhibition. Biofilm growth over time was monitored in situ using optical conference tomography. Biofilm formation was effectively inhibited when the 275 nm UV-C irradiance was ≥8 µW/cm2. Biofilm samples were collected from several regions on the surface, representing low and high UV-C irradiance. RNA sequencing of these samples revealed that high UV-C irradiance inhibited the expression of functional genes related to energy metabolism, DNA repair, quorum sensing, polysaccharide production, and mobility. However, insufficient sublethal UV-C exposure led to upregulation genes for SOS response and quorum sensing as survival strategies against the UV-C stress. These results underscore the need to maintain minimum UV-C exposure on surfaces to effectively inhibit biofilm formation in water systems.


Subject(s)
Biofouling , Pseudomonas aeruginosa/physiology , Optical Fibers , Disinfection/methods , Biofilms/radiation effects , Water , Quorum Sensing
18.
Environ Sci Technol ; 57(38): 14373-14383, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37683087

ABSTRACT

Transition metal catalysts can significantly enhance the pyrolytic remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). Significantly higher pyrene removal efficiency was observed after the pyrolytic treatment of Fe-enriched bentonite (1.8% wt ion-exchanged content) relative to natural bentonite or soil (i.e., 93% vs 48% and 4%) at the unprecedentedly low temperature of 150 °C with only 15 min treatment time. DFT calculations showed that bentonite surfaces with Fe3+ or Cu2+ adsorb pyrene stronger than surfaces with Zn2+ or Na+. Enhanced pyrene adsorption results from increased charge transfer from its aromatic π-bonds to the cation site, which destabilizes pyrene allowing for faster degradation at lower temperatures. UV-Vis and GC-MS analyses revealed pyrene decomposition products in extracts of samples treated at 150 °C, including small aromatic compounds. As the pyrolysis temperature increased above 200 °C, product distribution shifted from extractable compounds to char coating the residue particles. No extractable byproducts were detected after treatment at 400 °C, indicating that char was the final product of pyrene decomposition. Tests with human lung cells showed that extracts of samples pyrolyzed at 150 °C were toxic; thus, high removal efficiency by pyrolytic treatment does not guarantee detoxification. No cytotoxicity was observed for extracts from Fe-bentonite samples treated at 300 °C, inferring that char is an appropriate treatment end point. Overall, we demonstrate that transition metals in clay can catalyze pyrolytic reactions at relatively low temperatures to decrease the energy and contact times required to meet cleanup standards. However, mitigating residual toxicity may require higher pyrolysis temperatures.


Subject(s)
Bentonite , Polycyclic Aromatic Hydrocarbons , Humans , Temperature , Bentonite/chemistry , Pyrolysis , Pyrenes/chemistry , Soil
19.
Water Res ; 244: 120442, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37549546

ABSTRACT

Microbial degradation to remove residual antibiotics in wastewater is of growing interest. However, biological treatment of antibiotics may cause resistance dissemination by mutations and horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs). In this study, a Mn(Ⅱ)-oxidizing bacterium (MnOB), Pseudomonas aeruginosa MQ2, simultaneously degraded antibiotics, decreased HGT, and mitigated antibiotic resistance mutation. Intracellular Mn(II) levels increased during manganese oxidation, and biogenic manganese oxides (BioMnOx, including Mn(II), Mn(III) and Mn(IV)) tightly coated the cell surface. Mn(II) bio-oxidation mitigated antibiotic resistance acquisition from an E. coli ARG donor and mitigated antibiotic resistance inducement by decreasing conjugative transfer and mutation, respectively. BioMnOx also oxidized ciprofloxacin (1 mg/L) and tetracycline (5 mg/L), respectively removing 93% and 96% within 24 h. Transcriptomic analysis revealed that two new multicopper oxidase and one peroxidase genes are involved in Mn(II) oxidation. Downregulation of SOS response, multidrug resistance and type Ⅳ secretion system related genes explained that Mn(II) and BioMnOx decreased HGT and mitigated resistance mutation by alleviating oxidative stress, which makes recipient cells more vulnerable to ARG acquisition and mutation. A manganese bio-oxidation based reactor was constructed and completely removed tetracycline with environmental concentration within 4-hour hydraulic retention time. Overall, this study suggests that Mn (II) bio-oxidation process could be exploited to control antibiotic contamination and mitigate resistance propagation during water treatment.


Subject(s)
Anti-Bacterial Agents , Manganese , Anti-Bacterial Agents/pharmacology , Escherichia coli/metabolism , Oxidation-Reduction , Oxides/metabolism , Manganese Compounds/metabolism , Tetracycline
20.
Surg Radiol Anat ; 45(10): 1257-1261, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37572147

ABSTRACT

Carotid-anterior cerebral artery anastomosis (carotid-ACA anastomosis) is described as infrequent vascular connections between the pre-ophthalmic segment of the internal carotid artery (ICA) and the A1 segment of the anterior cerebral artery (ACA). The embryological origin of these variant is still unclear and they are often associated to other vascular anomalies of the circle of Willis, as well as to the presence of aneurysms. Carotid-ACA anastomosis is often right-sided although left and bilateral cases have also been described. We report a rare case by MR angiography of a carotid-ACA anastomosis in which the abnormal vessel arises from the right ICA and takes an infraoptic course to join the A2 segment of the contralateral ACA, making this vascular anomaly function as a 'left ACA with an origin at the right ICA'. The A1 segment of the left ACA is absent and both A2 segments of the ACAs present fenestration. To our knowledge, no similar cases have been reported in English literature so far.


Subject(s)
Intracranial Aneurysm , Vascular Malformations , Humans , Carotid Artery, Internal/abnormalities , Anterior Cerebral Artery/diagnostic imaging , Anterior Cerebral Artery/surgery , Anterior Cerebral Artery/abnormalities , Carotid Arteries , Intracranial Aneurysm/surgery , Anastomosis, Surgical , Magnetic Resonance Angiography , Cerebral Angiography
SELECTION OF CITATIONS
SEARCH DETAIL
...