Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Bioengineering (Basel) ; 11(1)2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38247954

ABSTRACT

Accurate classification of electromyographic (EMG) signals is vital in biomedical applications. This study evaluates different architectures of recurrent neural networks for the classification of EMG signals associated with five movements of the right upper extremity. A Butterworth filter was implemented for signal preprocessing, followed by segmentation into 250 ms windows, with an overlap of 190 ms. The resulting dataset was divided into training, validation, and testing subsets. The Grey Wolf Optimization algorithm was applied to the gated recurrent unit (GRU), long short-term memory (LSTM) architectures, and bidirectional recurrent neural networks. In parallel, a performance comparison with support vector machines (SVMs) was performed. The results obtained in the first experimental phase revealed that all the RNN networks evaluated reached a 100% accuracy, standing above the 93% achieved by the SVM. Regarding classification speed, LSTM ranked as the fastest architecture, recording a time of 0.12 ms, followed by GRU with 0.134 ms. Bidirectional recurrent neural networks showed a response time of 0.2 ms, while SVM had the longest time at 2.7 ms. In the second experimental phase, a slight decrease in the accuracy of the RNN models was observed, standing at 98.46% for LSTM, 96.38% for GRU, and 97.63% for the bidirectional network. The findings of this study highlight the effectiveness and speed of recurrent neural networks in the EMG signal classification task.

2.
Polymers (Basel) ; 14(23)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36501530

ABSTRACT

The consumer market has changed drastically in recent times. Consumers are becoming more demanding, and many companies are competing to be market leaders. Therefore, companies must reduce rejects and minimize their operating costs. One problem that arises in producing plastic parts is controlling deformation, mainly in the form of shrinkage due to the material and warpage associated with the geometry of the parts. This work presents a novel extended adaptive weighted sum method (EAAWSM: Extended Adaptive Weighted Summation Method) integrated into a Pareto front model. The performance of this model is evaluated against three other conventional optimization methods-Taguchi-Gray (TG), Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), and Model Optimization by Genetic Algorithm (MOGA)-and compared with EAAWSM. Two response variables and three input factors are considered to be analyzed: material melting temperature, mold temperature, and filling time. Subsequently, the performance is compared and its behavior observed using Moldflow® simulation. The results show that with the EAAWSM method, the shrinkage is 15.75% and the warpage is 3.847 mm, regarding the manufacturing process parameters of a plastic part. This proposed deterministic model is easy to use to optimize two or more output variables, and its results are straightforward and reliable.

3.
Micromachines (Basel) ; 13(9)2022 Aug 27.
Article in English | MEDLINE | ID: mdl-36144029

ABSTRACT

Knowing exactly how much solar radiation reaches a particular area is helpful when planning solar energy installations. In recent years the use of renewable energies, especially those related to photovoltaic systems, has had an impressive up-tendency. Therefore, mechanisms that allow us to predict solar radiation are essential. This work aims to present results for predicting solar radiation using optimization with the Random Forest (RF) algorithm. Moreover, it compares the obtained results with other machine learning models. The conducted analysis is performed in Queretaro, Mexico, which has both direct solar radiation and suitable weather conditions more than three quarters of the year. The results show an effective improvement when optimizing the hyperparameters of the RF and Adaboost models, with an improvement of 95.98% accuracy compared to conventional methods such as linear regression, with 54.19%, or recurrent networks, with 53.96%, without increasing the computational time and performance requirements to obtain the prediction. The analysis was successfully repeated in two different scenarios for periods in 2020 and 2021 in Juriquilla. The developed method provides robust performance with similar results, confirming the validity and effectiveness of our approach.

4.
Sensors (Basel) ; 22(11)2022 May 27.
Article in English | MEDLINE | ID: mdl-35684670

ABSTRACT

This article presents the use of the equations of the dynamic response to a step input in metaheuristic algorithm for the parametric estimation of a motor model. The model equations are analyzed, and the relations in steady-state and transient-state are used as delimiters in the search. These relations reduce the number of random parameters in algorithm search and reduce the iterations to find an acceptable result. The tests were implemented in two motors of known parameters to estimate the performance of the modifications in the algorithms. Tests were carried out with three algorithms (Gray Wolf Optimizer, Jaya Algorithm, and Cuckoo Search Algorithm) to prove that the benefits can be extended to various metaheuristics. The search parameters were also varied, and tests were developed with different iterations and populations. The results show an improvement for all the algorithms used, achieving the same error as the original method but with 10 to 50% fewer iterations.


Subject(s)
Algorithms , Models, Theoretical
5.
Micromachines (Basel) ; 13(6)2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35744557

ABSTRACT

This article explores the patents of solar energy technologies in the organic Rankine cycle (ORC) applications. The conversion of low-quality thermal energy into electricity is one of the main characteristics of an ORC, making efficient and viable technologies available today. However, only a few and outdated articles that analyze patents that use solar energy technologies in ORC applications exist. This leads to a lack of updated information regarding the number of published patents, International Patent Classification (IPC) codes associated with them, technology life cycle status, and the most relevant patented developments. Thus, this article conducts a current investigation of patents published between January 2010 and May 2022 using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology and keywords. One thousand two hundred ninety-nine patents were obtained as part of the study and classified in F and Y groups of the IPC. The time-lapse analyzed was between January 2010 and May 2022. In 2014 and 2015, a peak of published patents was observed. China (CN) was the country that published the most significant number of patents worldwide. However, the European Patent Office (EP), the World Intellectual Property Organization (WO), and the United States (US) publish the patents with the highest number of patent citations. Furthermore, the possible trend regarding the development of patents for each technology is presented. A high-performance theoretical ORC plant based on the patent information analyzed by this article is introduced. Finally, exploration of IPC revealed 17 codes related to solar energy technologies in ORC applications not indexed in the main search.

6.
Sensors (Basel) ; 22(1)2021 Dec 25.
Article in English | MEDLINE | ID: mdl-35009672

ABSTRACT

Machinery condition monitoring and failure analysis is an engineering problem to pay attention to among all those being studied. Excessive vibration in a rotating system can damage the system and cannot be ignored. One option to prevent vibrations in a system is through preparation for them with a model. The accuracy of the model depends mainly on the type of model and the fitting that is attained. The non-linear model parameters can be complex to fit. Therefore, artificial intelligence is an option for performing this tuning. Within evolutionary computation, there are many optimization and tuning algorithms, the best known being genetic algorithms, but they contain many specific parameters. That is why algorithms such as the gray wolf optimizer (GWO) are alternatives for this tuning. There is a small number of mechanical applications in which the GWO algorithm has been implemented. Therefore, the GWO algorithm was used to fit non-linear regression models for vibration amplitude measurements in the radial direction in relation to the rotational frequency in a gas microturbine without considering temperature effects. RMSE and R2 were used as evaluation criteria. The results showed good agreement concerning the statistical analysis. The 2nd and 4th-order models, and the Gaussian and sinusoidal models, improved the fit. All models evaluated predicted the data with a high coefficient of determination (85-93%); the RMSE was between 0.19 and 0.22 for the worst proposed model. The proposed methodology can be used to optimize the estimated models with statistical tools.


Subject(s)
Artificial Intelligence , Vibration , Algorithms
SELECTION OF CITATIONS
SEARCH DETAIL
...